Daniel Desmecht
University of Liège
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Desmecht.
Nature Genetics | 2008
Carole Charlier; Wouter Coppieters; Frédéric Rollin; Daniel Desmecht; Jørgen S. Agerholm; Nadine Cambisano; Eloisa Carta; Sabrina Dardano; Marc Dive; Jean-Claude Frennet; R Hanset; Xavier Hubin; Claus B. Jørgensen; Latifa Karim; Matthew Kent; Kirsten Harvey; Brian R. Pearce; Patricia Simon; Nico Tama; Haisheng Nie; Sébastien Vandeputte; Sigbjørn Lien; Maria Longeri; Merete Fredholm; Robert J. Harvey; Michel Georges
The widespread use of elite sires by means of artificial insemination in livestock breeding leads to the frequent emergence of recessive genetic defects, which cause significant economic and animal welfare concerns. Here we show that the availability of genome-wide, high-density SNP panels, combined with the typical structure of livestock populations, markedly accelerates the positional identification of genes and mutations that cause inherited defects. We report the fine-scale mapping of five recessive disorders in cattle and the molecular basis for three of these: congenital muscular dystony (CMD) types 1 and 2 in Belgian Blue cattle and ichthyosis fetalis in Italian Chianina cattle. Identification of these causative mutations has an immediate translation into breeding practice, allowing marker assisted selection against the defects through avoidance of at-risk matings.
Journal of Immunology | 2008
Emmanuelle Henry; Christophe Desmet; Virginie Garzé; Laurence Fievez; Denis Bedoret; Carlo Heirman; Pedro Faísca; Fabrice Jaspar; Philippe Gosset; Alain Jacquet; Daniel Desmecht; Kris Thielemans; Pierre Lekeux; Muriel Moser; Fabrice Bureau
Dendritic cells (DCs) are professional APCs that have a unique capacity to initiate primary immune responses, including tolerogenic responses. We have genetically engineered bone marrow-derived DCs to express the immunosuppressive cytokine IL-10 and tested the ability of these cells to control experimental asthma. A single intratracheal injection of OVA-pulsed IL-10-transduced DCs (OVA-IL-10-DCs) to naive mice before OVA sensitization and challenge prevented all of the cardinal features of airway allergy, namely, eosinophilic airway inflammation, airway hyperreactivity, and production of mucus, Ag-specific Igs, and IL-4. OVA-IL-10-DCs also reversed established experimental asthma and had long-lasting and Ag-specific effects. We furthermore showed, by using IL-10-deficient mice, that host IL-10 is required for mediating the immunomodulatory effects of OVA-IL-10-DCs and demonstrated a significant increase in the percentage of OVA-specific CD4+CD25+Foxp3+IL-10+ regulatory T cells in the mediastinal lymph nodes of OVA-IL-10-DC-injected mice. Finally, adoptive transfer of CD4+ mediastinal lymph node T cells from mice injected with OVA-IL-10-DCs protected OVA-sensitized recipients from airway eosinophilia upon OVA provocation. Our study describes a promising strategy to induce long-lasting Ag-specific tolerance in airway allergy.
Antiviral Research | 2012
Mutien-Marie Garigliany; Calixte Bayrou; Déborah Kleijnen; Dominique Cassart; Sandra Jolly; Annick Linden; Daniel Desmecht
In the summer-fall of 2011, a nonspecific febrile syndrome characterized by hyperthermia, drop in milk production and watery diarrhea was reported in adult dairy cows from a series of farms located in North-West Europe. Further, in November 2011, an enzootic outbreak of abortion, stillbirth and birth at term of lambs, kids and calves with neurologic signs and/or head, spine or limb malformations emerged throughout several European countries. Both syndromes were associated with the presence in the blood (adults) or in the central nervous system (newborns) of the genome of a new Shamonda-Sathuperi reassortant orthobunyavirus provisionally named Schmallenberg virus after the place where the first positive samples were collected. The clinical, pathological, virological and epidemiological facts that were made publicly available during the first 6 months after the emergence are presented here. Current knowledge of the epidemiology of the phylogenetically closest relatives of the newcomer (Shamonda, Sathuperi, Aino and Akabane viruses) is not exhaustive enough to predict whether the current outbreak of Schmallenberg virus is the prelude to endemicity or to a 2 years long outbreak before the infection burns out when serologically naïve animals are no longer available. In the future, cyclic epizootic reemergences are a possibility too, either synchronized with a global decrease of herd immunity or due to antigenic variants escaping the immunity acquired against their predecessors. The latter hypothesis seems unlikely because of the wide array of biologic constraints acting on the genome of viruses whose life cycle requires transmission by a vector, which represses genetic drift. The remarkable stability of the Shamonda virus genome over the last forty years is reassuring in this regard.
Emerging Infectious Diseases | 2012
Mutien-Marie Garigliany; Bernd Hoffmann; Marc Dive; Arnaud Sartelet; Calixte Bayrou; Dominique Cassart; Martin Beer; Daniel Desmecht
To the Editor: From the end of August through the end of October 2011, a clinical syndrome involving adult cattle and the fetuses of pregnant cows emerged in the border area between the Netherlands and North Rhine-Westphalia, Germany (1). The syndrome was characterized by nonspecific clinical signs (fever, decreased milk production), severe diarrhea, and some abortions. A metagenomic analysis was conducted on pooled samples from cattle with acute signs on a farm in the city of Schmallenberg, Germany. The analysis detected nucleotide sequences homologous to arthropod-borne Akabane, Aino, and Shamonda viruses, all belonging to the family Bunyaviridae, genus Orthobunyavirus, and Simbu serogroup (1). Real-time PCR detected the genomic RNA of the new and emerging virus, tentatively designated Schmallenberg virus (SBV), in the blood of adult cattle, abdominal fluid of a stillborn calf, and brains of lambs born with birth defects on dozens of farms in the Netherlands, Germany, and Belgium. No data are yet available to predict how the emerging virus might affect the cattle industry. We report the case of a 1-week old calf with severe central nervous system (CNS) lesions probably caused by in utero infection with the new virus. In Belgium in January 2012, a Belgian Blue multiparous cow gave birth to a 45-kg female calf that was morphologically normal but hypertonic and hyperreflexic. Pregnancy had proceeded uneventfully and lasted 9 months and 4 days. Spontaneous reflexes such as sucking, swallowing, micturition, defecation, and crying were completely preserved, but the calf was unable to stand, and its consciousness alternated from mild to severe depression. It was obviously blind and showed ventrolateral strabismus, but the pupils functioned normally. Muscle tone was permanently increased, as indicated by tetanus-like erection of the ears and by a violent but brief startle response to the slightest acoustic or tactile stimulation (Figure). When the calf was placed upright, loss of conscious proprioception was obvious; it maintained its position only a few seconds before collapsing. Altogether, the clinical signs suggested severe dysfunctions of the cerebral cortex, basal ganglia, and mesencephalon. The calf drank from a bottle twice a day for a week, but then was euthanized for humane reasons (infected decubital ulcers). Figure A 7-day old, female, Schmallenberg virus–positive calf showing severe central nervous system dysfunctions (A–C) and lesions (D–E). A) Spontaneously lying down; B–C) standing with assistance; D–G) porcencephaly, ... At necropsy, the cerebellum, brainstem, and diencephalon appeared normal in shape and volume (Figure). However, the cerebral hemispheres were replaced by 2 thin-walled, fluid-filled cysts with some floating islets and peninsulae corresponding to preserved cortex. There was variable preservation of the cerebrum, total liquefaction of occipital lobes, and irregular preservation of the outer layers of some parts of the temporal and frontal lobes. Altogether, the picture was compatible with severe porencephaly or hydranencephaly. The spine showed no sign of scoliosis, and movement of the limb joints was not restricted (i.e., no arthrogryposis). Samples were removed from the remnants of the cerebrum, diencephalon, and organs (thymus, lung, myocardium, jejunum, ileum, mesenteric lymph node, liver, spleen, kidney, and striated muscle), and 3 independent real-time PCR protocols were conducted to detect genomes of bovine viral diarrhea/mucosal disease virus, bluetongue virus serotype 8, and the novel SBV. Initial retrotranscription of the RNA genomes was followed by quantitative (real-time) PCR. The process was conducted by using our procedures (2) and, for SBV, by following the protocol and using recently developed control reagents as described (1). The SBV genome was detected in only CNS samples (quantification cycle value 28.8); bovine viral diarrhea/mucosal disease virus and BTV-8 genomes were not detected. The new virus genome load was 1.61 × 104 copies per gram of cerebrum sample. Taken together, the above data suggest that, like other Simbu serogroup viruses, the new virus crosses the placenta, contaminates the bovine fetus, infects the fetus’ CNS, and causes necrosis and/or developmental arrest of the cerebral cortex. Unlike the viruses mentioned above (3,4), and provided this case is not an exception, the SBV genome seems to persist in the infected fetus and is detectable after birth by real-time reverse transcription PCR, despite gestation length. Although reliable reagents for detecting seroconversion are temporarily unavailable, the persistence of the new virus in fetal tissue should greatly facilitate the epidemiologic monitoring of the emergence and spread of the new virus. When calves from experimentally infected dams are infected with the closest phylogenetic relative to SBV, Akabane virus, porencephaly develops during gestational days 62–96 (5). If the same is true for the new virus, the above calf was probably infected during June 9–July 13, 2011. Therefore, it is hypothesized that infected arthropods were already circulating in the village of Hamois-in-Condroz (50°24′56′′N, 5°8′7′′E), which is ≈240 km southwest of Schmallenberg (51°8′42′′N, 8°17′18′′E), ≈2 months before the emergence of the clinical syndrome that led to the identification of the new virus.
Emerging Infectious Diseases | 2012
Annick Linden; Daniel Desmecht; Rosario Volpe; Marc Wirtgen; Fabien Grégoire; Jessica Pirson; Julien Paternostre; Déborah Kleijnen; Horst Schirrmeier; Martin Beer; Mutien-Marie Garigliany
Schmallenberg virus was detected in cattle and sheep in northwestern Europe in 2011. To determine whether wild ruminants are also susceptible, we measured antibody seroprevalence in cervids (roe deer and red deer) in Belgium in 2010 and 2011. Findings indicated rapid spread among these deer since virus emergence ≈250 km away.
Emerging Infectious Diseases | 2012
Mutien-Marie Garigliany; Calixte Bayrou; Déborah Kleijnen; Dominique Cassart; Daniel Desmecht
To determine prevalence of antibodies against Schmallenberg virus in adult cows and proportion of infection transmitted to fetuses, we tested serum samples from 519 cow/calf pairs in Belgium in spring 2012. Of cattle within 250 km of location where the virus emerged, ≈91% tested positive for IgG targeting nucleoprotein. Risk for fetal infection was ≈28%.
Veterinary Research Communications | 1996
Daniel Desmecht; Annick Linden; Hélène Amory; Tatiana Art; Pierre Lekeux
Fifty-eight healthy horses were studied during five sporting events of various intensities and durations, namely show-jumping (n=6), cross-country in a three-day event (n=30), trotting races (n=7), galloping reces (n=7) and endurance rides (n=8). Venous blood samples were collected at rest and immediately after exercise and analysed for plasma cortisol (CORT) and lactate (LA) levels. The experimental procedure was the same throughout the investigation so as to permit a reliable comparison between the five types of exercise. The type of event significantly affected both the resting (p≤0.05) and the postexercise (p≤0.01) plasma CORT. The degree of exercise-induced hypercortisolaemia was related to both the intensity and the duration of exercise for all five sporting events, but the endurance ride induced the most and show-jumping the least serious post-exercise CORT changes. LA production was much more closely related to the intensity of the exercise than was CORT. It is concluded that simultaneous measurements of plasma CORT and LA levels may be useful to discriminate between different types of exercise, adjust training programmes, and improve our comprehension of the physiology of sport horses at exercise.
PLOS Pathogens | 2011
Benjamin Bondue; Olivier Vosters; Patricia de Nadai; Stéphanie Glineur; Olivier De Henau; Souphalone Luangsay; Frédéric Van Gool; David Communi; Paul De Vuyst; Daniel Desmecht; Marc Parmentier
Viral diseases of the respiratory tract, which include influenza pandemic, children acute bronchiolitis, and viral pneumonia of the elderly, represent major health problems. Plasmacytoid dendritic cells play an important role in anti-viral immunity, and these cells were recently shown to express ChemR23, the receptor for the chemoattractant protein chemerin, which is expressed by epithelial cells in the lung. Our aim was to determine the role played by the chemerin/ChemR23 system in the physiopathology of viral pneumonia, using the pneumonia virus of mice (PVM) as a model. Wild-type and ChemR23 knock-out mice were infected by PVM and followed for functional and inflammatory parameters. ChemR23−/− mice displayed higher mortality/morbidity, alteration of lung function, delayed viral clearance and increased neutrophilic infiltration. We demonstrated in these mice a lower recruitment of plasmacytoid dendritic cells and a reduction in type I interferon production. The role of plasmacytoid dendritic cells was further addressed by performing depletion and adoptive transfer experiments as well as by the generation of chimeric mice, demonstrating two opposite effects of the chemerin/ChemR23 system. First, the ChemR23-dependent recruitment of plasmacytoid dendritic cells contributes to adaptive immune responses and viral clearance, but also enhances the inflammatory response. Second, increased morbidity/mortality in ChemR23−/− mice is not due to defective plasmacytoid dendritic cells recruitment, but rather to the loss of an anti-inflammatory pathway involving ChemR23 expressed by non-leukocytic cells. The chemerin/ChemR23 system plays important roles in the physiopathology of viral pneumonia, and might therefore be considered as a therapeutic target for anti-viral and anti-inflammatory therapies.
Veterinary Record | 2008
Daniel Desmecht; Raphaël Vanden Bergh; Arnaud Sartelet; M. Leclerc; C. Mignot; F. Misse; C. Sudraud; S. Berthemin; Sandra Jolly; Bénédicte Mousset; Annick Linden; Freddy Coignoul; Dominique Cassart
DURING the winter 2007/08, an outbreak of unprecedented development lesions of the central nervous system was detected in newborn or stillborn calves and lambs among the routine submissions to the Faculty of Veterinary Medicine, Liege, Belgium, for postmortem examination. The congenital
Trends in Parasitology | 2008
Nicolas Antoine-Moussiaux; Stefan Magez; Daniel Desmecht
African trypanosomiasis is the collective name for a wide variety of trypanosome infections that affect humans and livestock. In recent years, experimental mice infection models have provided new insights into both human and animal trypanosomiasis. Mouse models seem to be a valuable and versatile tool in trypanosomiasis-associated pathology and immunology research and highlight the variety shown by African trypanosomiases. Indeed, inbred mouse strains have enabled the study of genetic determinants of susceptibility and of the roles of anti-parasite antibodies, inflammatory mediators and anti-inflammatory mediators for each trypanosome species. Remarkable advances relating to the encephalitic stage of sleeping sickness have also been achieved thanks to murine models. The different contributions of murine models to the African trypanosomiases knowledge are presented here. Future search directions are finally proposed, with respect to mouse model opportunities and limitations.