Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Duerschmied is active.

Publication


Featured researches published by Daniel Duerschmied.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Extracellular DNA traps promote thrombosis

Tobias A. Fuchs; Alexander Brill; Daniel Duerschmied; Daphne Schatzberg; Marc Monestier; Daniel D. Myers; Shirley K. Wrobleski; Thomas W. Wakefield; John H. Hartwig; Denisa D. Wagner

Neutrophil extracellular traps (NETs) are part of the innate immune response to infections. NETs are a meshwork of DNA fibers comprising histones and antimicrobial proteins. Microbes are immobilized in NETs and encounter a locally high and lethal concentration of effector proteins. Recent studies show that NETs are formed inside the vasculature in infections and noninfectious diseases. Here we report that NETs provide a heretofore unrecognized scaffold and stimulus for thrombus formation. NETs perfused with blood caused platelet adhesion, activation, and aggregation. DNase or the anticoagulant heparin dismantled the NET scaffold and prevented thrombus formation. Stimulation of platelets with purified histones was sufficient for aggregation. NETs recruited red blood cells, promoted fibrin deposition, and induced a red thrombus, such as that found in veins. Markers of extracellular DNA traps were detected in a thrombus and plasma of baboons subjected to deep vein thrombosis, an example of inflammation-enhanced thrombosis. Our observations indicate that NETs are a previously unrecognized link between inflammation and thrombosis and may further explain the epidemiological association of infection with thrombosis.


Cancer Research | 2008

Platelet Granule Secretion Continuously Prevents Intratumor Hemorrhage

Benoît Ho-Tin-Noé; Tobias Goerge; Stephen M. Cifuni; Daniel Duerschmied; Denisa D. Wagner

Cancer is associated with a prothrombogenic state capable of platelet activation. Platelets, on the other hand, can support angiogenesis, a process involved in the progression of tumor growth and metastasis. However, it is unclear whether platelet/tumor interactions substantially contribute to tumor physiology. We investigated whether platelets stabilize tumor vessels and studied the underlying mechanisms. We induced severe acute thrombocytopenia in mice bearing s.c. Lewis lung carcinoma or B16F10 melanoma. Intravital microscopy revealed that platelet depletion led to a rapid destabilization of tumor vessels with intratumor hemorrhage starting as soon as 30 min after induction of thrombocytopenia. Using an inhibitor of glycoprotein Ibalpha (GPIbalpha) and genetically engineered mice with platelet adhesion defects, we investigated the role of platelet adhesion receptors in stabilizing tumor vessels. We found that a single defect in either GPIbalpha, von Willebrand factor, P-selectin, or platelet integrin activation did not lead to intratumor hemorrhage. We then compared the ability of transfused resting and degranulated platelets to prevent intratumor hemorrhage. Whereas resting platelets prevented thrombocytopenia-induced tumor bleeding, circulating degranulated platelets did not. This suggests that the prevention of intratumor hemorrhage by platelets relies on the secretion of the content of platelet granules. Supporting this hypothesis, we further found that thrombocytopenia dramatically impairs the balance between propermeability and antipermeability factors in tumor-bearing animals, in particular depleting blood of angiopoietin-1 and serotonin. Our results show a crucial contribution of platelets to tumor homeostasis through continuous prevention of severe intratumor hemorrhage and consequent cell death. The study also suggests platelet function as a reasonable target for specific destabilization of tumor vessels.


Blood | 2013

Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice.

Daniel Duerschmied; Georgette L. Suidan; Mélanie Demers; Nadine Herr; Carla Carbo; Alexander Brill; Stephen M. Cifuni; Maximilian Mauler; Sanja Cicko; Michael Bader; Marco Idzko; Christoph Bode; Denisa D. Wagner

The majority of peripheral serotonin is stored in platelets, which secrete it on activation. Serotonin releases Weibel-Palade bodies (WPBs) and we asked whether absence of platelet serotonin affects neutrophil recruitment in inflammatory responses. Tryptophan hydroxylase (Tph)1–deficient mice, lacking non-neuronal serotonin, showed mild leukocytosis compared with wild-type (WT), primarily driven by an elevated neutrophil count. Despite this, 50% fewer leukocytes rolled on unstimulated mesenteric venous endothelium of Tph1(-/-) mice. The velocity of rolling leukocytes was higher in Tph1(-/-) mice, indicating fewer selectin-mediated interactions with endothelium. Stimulation of endothelium with histamine, a secretagogue of WPBs, or injection of serotonin normalized the rolling in Tph1(-/-) mice. Diminished rolling in Tph1(-/-) mice resulted in reduced firm adhesion of leukocytes after lipopolysaccharide treatment. Blocking platelet serotonin uptake with fluoxetine in WT mice reduced serum serotonin by > 80% and similarly reduced leukocyte rolling and adhesion. Four hours after inflammatory stimulation, neutrophil extravasation into lung, peritoneum, and skin wounds was reduced in Tph1(-/-) mice, whereas in vitro neutrophil chemotaxis was independent of serotonin. Survival of lipopolysaccharide-induced endotoxic shock was improved in Tph1(-/-) mice. In conclusion, platelet serotonin promotes the recruitment of neutrophils in acute inflammation, supporting an important role for platelet serotonin in innate immunity.


Journal of Thrombosis and Haemostasis | 2009

Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti-von Willebrand factor A1-domain aptamer ARC1779

John L. Diener; H. A. Daniel Lagassé; Daniel Duerschmied; Yahye Merhi; J-F. Tanguay; Renta Hutabarat; J. Gilbert; Denisa D. Wagner; Robert G. Schaub

Summary.  Background: von Willebrand factor (VWF) has a role in both hemostasis and thrombosis. Platelets adhere to damaged arteries by interactions between the VWF A1‐domain and glycoprotein Ib receptors under conditions of high shear. This initial platelet binding event stimulates platelet activation, recruitment, and activation of the clotting cascade, promoting thrombus formation. Objective: To characterize the inhibitory activity of a VWF inhibitory aptamer. Methods: Using in vitro selection, aptamer stabilization, and conjugation to a 20‐kDa poly(ethylene glycol), we generated a nuclease‐resistant aptamer, ARC1779, that binds to the VWF A1‐domain with high affinity (KD ∼ 2 nm). The aptamer was assessed for inhibition of VWF‐induced platelet aggregation. In vitro inhibition of platelet adhesion was assessed on collagen‐coated slides and injured pig aortic segments. In vivo activity was assessed in a cynomolgus monkey carotid electrical injury thrombosis model. Results and Conclusion: ARC1779 inhibited botrocetin‐induced platelet aggregation (IC90 ∼ 300 nm) and shear force‐induced platelet aggregation (IC95 ∼ 400 nm). It reduced adhesion of platelets to collagen‐coated matrices and formation of platelet thrombi on denuded porcine arteries. ARC1779 also inhibited the formation of occlusive thrombi in cynomolgus monkeys. We have discovered a novel anti‐VWF aptamer that could have therapeutic use as an anti‐VWF agent in the setting of VWF‐mediated thrombosis.


Blood | 2010

p38 mitogen-activated protein kinase activation during platelet storage: consequences for platelet recovery and hemostatic function in vivo.

Matthias Canault; Daniel Duerschmied; Alexander Brill; Lucia Stefanini; Daphne Schatzberg; Stephen M. Cifuni; Wolfgang Bergmeier; Denisa D. Wagner

Platelets undergo several modifications during storage that reduce their posttransfusion survival and functionality. One important feature of these changes, which are known as platelet storage lesion, is the shedding of the surface glycoproteins GPIb-alpha and GPV. We recently demonstrated that tumor necrosis factor-alpha converting enzyme (TACE/ADAM17) mediates mitochondrial injury-induced shedding of adhesion receptors and that TACE activity correlates with reduced posttransfusion survival of these cells. We now confirm that TACE mediates receptor shedding and clearance of platelets stored for 16 hours at 37 degrees C or 22 degrees C. We further demonstrate that both storage and mitochondrial injury lead to the phosphorylation of p38 mitogen-activated kinase (MAPK) in platelets and that TACE-mediated receptor shedding from mouse and human platelets requires p38 MAP kinase signaling. Protein kinase C, extracellular regulated-signal kinase MAPK, and caspases were not involved in TACE activation. Both inhibition of p38 MAPK and inactivation of TACE during platelet storage led to a markedly improved posttransfusion recovery and hemostatic function of platelets in mice. p38 MAPK inhibitors had only minor effects on the aggregation of fresh platelets under static or flow conditions in vitro. In summary, our data suggest that inhibition of p38 MAPK or TACE during storage may significantly improve the quality of stored platelets.


American Journal of Respiratory and Critical Care Medicine | 2013

Production of Serotonin by Tryptophan Hydroxylase 1 and Release via Platelets Contribute to Allergic Airway Inflammation

Thorsten Dürk; Daniel Duerschmied; Tobias Müller; Melanie Grimm; Sebastian Reuter; Rodolfo de Paula Vieira; Korcan Ayata; Sanja Cicko; Stephan Sorichter; Diego J. Walther; J. Christian Virchow; Christian Taube; Marco Idzko

RATIONALE 5-Hydroxytryptamine (5-HT) is involved in the pathogenesis of allergic airway inflammation (AAI). It is unclear, however, how 5-HT contributes to AAI and whether this depends on tryptophan hydroxylase (TPH) 1, the critical enzyme for peripheral 5-HT synthesis. OBJECTIVES To elucidate the role of TPH1 and the peripheral source of 5-HT in asthma pathogenesis. METHODS TPH1-deficient and TPH1-inhibitor-treated animals were challenged in ovalbumin and house dust mite models of AAI. Experiments with bone marrow chimera, mast cell-deficient animals, platelets transfusion, and bone marrow dendritic cells (BMDC) driven model of AAI were performed. 5-HT levels were measured in bronchoalveolar lavage fluid or serum of animals with AAI and in human asthma. MEASUREMENTS AND MAIN RESULTS 5-HT levels are increased in bronchoalveolar lavage fluid of mice and people with asthma after allergen provocation. TPH1 deficiency and TPH1 inhibition reduced all cardinal features of AAI. Administration of exogenous 5-HT restored AAI in TPH1-deficient mice. The pivotal role of 5-HT production by structural cells was corroborated by bone marrow chimera experiments. Experiments in mast cell-deficient mice revealed that mast cells are not a source of 5-HT, whereas transfusion of platelets from wild-type and TPH1-deficient mice revealed that only platelets containing 5-HT enhanced AAI. Lack of endogenous 5-HT in vitro and in vivo was associated with an impaired Th2-priming capacity of BMDC. CONCLUSIONS In summary, TPH1 deficiency or inhibition reduces AAI. Platelet- and not mast cell-derived 5-HT is pivotal in AAI, and lack of 5-HT leads to an impaired Th2-priming capacity of BMDC. Thus, targeting TPH1 could offer novel therapeutic options for asthma.


Circulation Research | 2011

Binding of CD40L to Mac-1’s I-domain involves the EQLKKSKTL motif and mediates leukocyte recruitment and atherosclerosis – but does not affect immunity and thrombosis in mice

Dennis Wolf; Jan David Hohmann; Ansgar Wiedemann; Kamila Bledzka; Hermann Blankenbach; Timoteo Marchini; Katharina Gutte; Katharina Zeschky; Nicole Bassler; Natalie Hoppe; Alexandra Ortiz Rodriguez; Nadine Herr; Ingo Hilgendorf; Peter Stachon; Florian Willecke; Daniel Duerschmied; Constantin von zur Muhlen; Dmitry A. Soloviev; Li Zhang; Christoph Bode; Edward F. Plow; Peter Libby; Karlheinz Peter; Andreas Zirlik

Rationale: CD40L figures prominently in chronic inflammatory diseases such as atherosclerosis. However, since CD40L potently regulates immune function and hemostasis by interaction with CD40 receptor and the platelet integrin GPIIb/IIIa, its global inhibition compromises host defense and generated thromboembolic complications in clinical trials. We recently reported that CD40L mediates atherogenesis independently of CD40 and proposed Mac-1 as an alternate receptor. Objective: Here, we molecularly characterized the CD40L-Mac-1 interaction and tested whether its selective inhibition by a small peptide modulates inflammation and atherogenesis in vivo. Methods and Results: CD40L concentration-dependently bound to Mac-1 I-domain in solid phase binding assays, and a high-affinity interaction was revealed by surface-plasmon-resonance analysis. We identified the motif EQLKKSKTL, an exposed loop between the &agr;1 helix and the &bgr;-sheet B, on Mac-1 as binding site for CD40L. A linear peptide mimicking this sequence, M7, specifically inhibited the interaction of CD40L and Mac-1. A cyclisized version optimized for in vivo use, cM7, decreased peritoneal inflammation and inflammatory cell recruitment in vivo. Finally, LDLr−/− mice treated with intraperitoneal injections of cM7 developed smaller, less inflamed atherosclerotic lesions featuring characteristics of stability. However, cM7 did not interfere with CD40L-CD40 binding in vitro and CD40L-GPIIb/IIIa-mediated thrombus formation in vivo. Conclusions: We present the novel finding that CD40L binds to the EQLKKSKTL motif on Mac-1 mediating leukocyte recruitment and atherogenesis. Specific inhibition of CD40L-Mac-1 binding may represent an attractive anti-inflammatory treatment strategy for atherosclerosis and other inflammatory conditions, potentially avoiding the unwanted immunologic and thrombotic effects of global inhibition of CD40L.


Blood | 2011

BMP activity controlled by BMPER regulates the proinflammatory phenotype of endothelium

Thomas Helbing; René Rothweiler; Elena Ketterer; Lena Goetz; Jennifer Heinke; Sebastian Grundmann; Daniel Duerschmied; Cam Patterson; Christoph Bode; Martin Moser

The endothelium plays a pivotal role in vascular inflammation. Here we study bone morphogenetic protein (BMP) signaling in endothelial inflammation and in particular the role of BMPER, an extracellular BMP modulator that is important in vascular development and angiogenesis. Using the BMP antagonist dorsomorphin or BMP2 as an agonist we show that BMP signaling is essential for the inflammatory response of vascular endothelial cells as demonstrated by intravital microscopy. We found that BMPER is decreased in inflammation similar to vascular protective genes like KLF2 and eNOS. Using in vitro and in vivo models we show that BMPER is down-regulated through the TNFα-NFκB-KLF2 signaling pathway. Functionally, lack of BMPER induced by siRNA or in BMPER(+/-) mice confers a proinflammatory endothelial phenotype with reduced eNOS levels and enhanced expression of adhesion molecules leading to increased leukocyte adhesion and extravasation in ex vivo and in vivo experiments. Vice versa, addition of BMPER exerts endothelium protective functions and antagonizes TNFα induced inflammation. Mechanistically, we demonstrate that these effects of BMPER are dependent on BMP signaling because of enhanced NFκB activity. In conclusion, the BMP modulator BMPER is a new protective regulator of vascular inflammation that modulates leukocyte adhesion and migration in vitro and in vivo.


Atherosclerosis | 2009

Simplified contrast ultrasound accurately reveals muscle perfusion deficits and reflects collateralization in PAD

Daniel Duerschmied; Qian Zhou; Elisabeth Rink; Dorothee Harder; Gabriele Freund; Manfred Olschewski; Christoph Bode; Christoph Hehrlein

BACKGROUND Simplified contrast-enhanced ultrasound (CEUS) can be used to evaluate muscle perfusion in peripheral arterial disease (PAD). Here, we report its diagnostic accuracy for detecting symptomatic PAD. Additionally, we hypothesize that the extent of collateral formation is reflected by CEUS. METHODS Ultrasound contrast agent was injected into an antecubital vein of 58 control subjects and 52 symptomatic PAD patients and its appearance in the calf muscle was evaluated. Interreader variability was tested using 118 raw data films. Arterial collateralization of PAD patients was assessed by angiographic imaging. RESULTS PAD patients showed a significantly longer median time to peak intensity (TTP, 36.9s) than control subjects (19.4s, p<0.001) with longer TTPs in advanced PAD stages. The area under the receiver operating characteristic curve was 0.942 and the mean TTP difference between two blinded readers was 0.28s. A TTP cut off at 30.5s was associated with 91% positive predictive value. PAD patients with good collateralization showed a significantly shorter TTP (34.1s) than patients with poor collateralization (44.0 s, p=0.008) but not a higher ankle-brachial index (ABI). CONCLUSIONS CEUS accurately displays perfusion deficits of the calf muscle in symptomatic PAD patients. The degree of arterial collateralization is reflected by CEUS and not by ABI.


Thrombosis and Haemostasis | 2014

Immune functions of platelets

Daniel Duerschmied; Christoph Bode; Ingo Ahrens

This review collects evidence about immune and inflammatory functions of platelets from a clinicians point of view. A focus on clinically relevant immune functions aims at stimulating further research, because the complexity of platelet immunity is incompletely understood and not yet translated into patient care. Platelets promote chronic inflammatory reactions (e.g. in atherosclerosis), modulate acute inflammatory disorders such as sepsis and other infections (participating in the host defense against pathogens), and contribute to exacerbations of autoimmune conditions (like asthma or arthritis). It would hence be obsolete to restrict a description of platelet functions to thrombosis and haemostasis--platelets clearly are the most abundant cells with immune functions in the circulation.

Collaboration


Dive into the Daniel Duerschmied's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingo Ahrens

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar

Denisa D. Wagner

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadine Herr

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar

Marco Idzko

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen M. Cifuni

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge