Daniel E. MacDonald
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel E. MacDonald.
Biomaterials | 2002
Daniel E. MacDonald; Namita Deo; Berislav Marković; Michael A. Stranick; P. Somasundaran
Titanium is known for its biocompatibility and is widely used in dental and orthopedic reconstructive surgery. There are reports that osteointegration of these implants is not optimal. The objective of this study was to modify titanium dioxide particles and examine the resultant effects on protein adsorption to these altered surfaces using a model cell binding protein, human plasma fibronectin (HPF). HPF is an important matrix glycoprotein that plays a major role in cell and protein attachment, Titanium dioxide surfaces were modified by heating the titanium dioxide powder at 800 degrees C for 1 h or treating with an oxidizing agent: peroxide in ammonium hydroxide followed by peroxide in hydrochloric acid. Oxidized and control samples were further treated with 9:1 butanol:water for 30 min. Brunauer-Emmett-Teller showed no change in particle surface area as a result of thermal or chemical treatment. Hydrophobicity increased with butanol treatment of titanium dioxide. Diffuse reflectance Fourier transform infrared spectroscopy showed the presence of -CH2 and -CH3 vibrations in the region of 2850-3000 cm(-1) for both the heated, butanol and peroxide/butanol-treated samples. The absence of increased C-O and O-C=O features as determined by electron spectroscopy for chemical analysis indicates that butanol adsorption is not occurring via an esterification mechanism. The interaction between butanol and pre-heated or peroxide-treated titanium dioxide may be one of association (weak electrostatic and/or Van der Waals forces) rather than direct ionic bonding. Maximum HPF adsorption on modified or unmodified titanium dioxide occurred within 30 min, with greater protein adsorption occurring on butanol-treated samples. Desorption was minimal with all modifications. Zeta potential measurements showed that HPF adsorption caused an increase in the negative zeta potential with the greatest change noted for the butanol-treated samples. These findings suggest that wettability and surface charge both play an important role in protein adsorption to titanium dioxide. Thus, by modifying the physico-chemical properties of titanium dioxide surfaces, it may be possible to alter protein adsorption and hence optimize cell attachment.
Journal of Biomedical Materials Research | 1998
Daniel E. MacDonald; Berislav Marković; Mike Allen; P. Somasundaran; Anell Boskey
Protein binding on metallic implant surfaces, such as titanium, is governed by the physico-chemical nature of the metallic surface. Human plasma fibronectin (HPF) is an important matrix glycoprotein that mediates cell and protein attachment to each other or to the extracellular matrix present during wound healing. The objective of this study was to investigate the adsorption of HPF onto polished commercially pure titanium (cpTi) by using atomic force microscopy (AFM) and electron spectroscopy for chemical analysis (ESCA) and to measure the resultant surface contact angle before and after HPF binding. Two types of cpTi disks, one highly polished in our laboratory (HSS) and one commercially prepared (31), were reacted with HPF solutions of varying concentrations (1 microg/mL-10 ng/mL). ESCA survey spectra of samples coated with 1 microg/mL of fibronectin showed an increase in organic nitrogen and carbon compared with uncoated controls. Contact angle measurements of HSS and 31 cpTi disks showed no significant difference in average contact angle (36.3 degrees +/- 3.5 and 39.1 degrees +/- 3.1) despite differences in local root mean square (RMS) surface roughness (4.45 +/- 0.46 nm and 22.37 +/- 4.17 nm) as measured by AFM. Images obtained by AFM showed that 31 specimens were more irregular, with large parallel polishing grooves. Adsorbed HPF appeared in a globular form with an average length of 16.5 +/- 1.0 nm, a height of 2.5 +/- 0.5 nm, and a width of 9.6 +/- 1.2 nm. Fibronectin coating on both HSS and 31 cpTi specimens resulted in a significant increase in hydrophobicity compared to uncoated specimens. These results indicate the significance of HPF on cpTi and may explain how cpTi implants function in situ.
Journal of Biomedical Materials Research | 2001
Daniel E. MacDonald; F. Betts; Michael A. Stranick; Stephen B. Doty; Adele L. Boskey
This study represents the first report of the physical and chemical changes occurring in coatings of failed hydroxyapatite (HA)-coated titanium implants obtained from a comprehensive, multicenter human dental implant study. A total of 53 retrieved samples were obtained and compared with unimplanted controls with the same manufacturer and similar manufacture dates. Forty-five retrieved implants were examined for surface characteristics and bulk composition. Implants were staged based on implantation history: stage 1 (implants retrieved between surgical placement and surgical uncovering), stage 2 (implants retrieved at surgical uncovering and evaluation), stage 3 (implants retrieved between surgical uncovering evaluation and occlusal loading), and stage 4 (implants retrieved after occlusal loading). Scanning electron microscopy showed progressive coating thinning with implantation time. At later stages, bare Ti metal was detected by energy-dispersive X-ray analysis and electron spectroscopy for chemical analysis. Increases in Ti and Al (2-7.5 atm % each) were detected at the apical ends of all stage 4 samples. In unimplanted coatings, X-ray diffraction analysis demonstrated the presence of amorphous calcium phosphate, beta-tricalcium phosphate, tetracalcium phosphate, and calcium oxide in addition to large hydroxyapatite crystals (c axis size, D002 = 429 +/- 13 A; a axis size, D300 = 402 +/- 11 A, a/c aspect ratio 0.92). The nonapatitic phases disappeared with increased implantation time, although there was a persistence of amorphous calcium phosphate. Bulk coating chemical analysis showed that Ca/P ratios for implant controls (1.81 +/- 0.01) were greater than stoichiometric HA (1.67) and decreased for implant stages 3 and 4 (1.69 +/- 0.09 and 1.67 +/- 0.09, respectively), explained by the dissolution of the non apatitic phases. Crystal sizes also changed with implantation times, being smaller than the control at all but stage 4. Fourier transform infrared analyses agreed with these results, and also indicated the accumulation of bone (protein and carbonate-apatite) in the retrieved coatings. The accumulation of bone was not stage dependent. These findings indicate that there was some biointegration with the surrounding bone, but the greatest changes occurred with the HA coating materials, their loss, and chemical change.
Colloids and Surfaces B: Biointerfaces | 2011
Bruce E. Rapuano; Daniel E. MacDonald
In the current study, we have altered the surface oxide properties of a Ti6Al4V alloy using heat treatment or radiofrequency glow discharge (RFGD) in order to evaluate the relationship between the physico-chemical and biological properties of the alloys surface oxide. The effects of surface pretreatments on the attachment of cells from two osteogenic cell lines (MG63 and MC3T3) and a mesenchymal stem cell line (C3H10T1/2) to fibronectin adsorbed to the alloy were measured. Both heat and RFGD pretreatments produced a several-fold increase in the number of cells that attached to fibronectin adsorbed to the alloy at a range of coating concentrations (0.001-10nM FN) for each cell line tested. An antibody (HFN7.1) directed against the central integrin binding domain of fibronectin produced a 65-70% inhibition of cell attachment to fibronectin-coated disks, indicating that cell attachment to the metal discs was dependent on fibronectin binding to cell integrin receptors. Both treatments also accelerated the cell spreading response manifested by extensive flattening and an increase in mean cellular area. The treatment-induced increases in the cell attachment activity of adsorbed fibronectin were correlated with previously demonstrated increases in Ti6Al4V oxide negative net surface charge at physiological pH produced by both heat and RFGD pretreatments. Since neither treatment increased the adsorption mass of fibronectin, these findings suggest that negatively charged surface oxide functional groups in Ti6Al4V can modulate fibronectins integrin receptor activity by altering the adsorbed proteins conformation. Our results further suggest that negatively charged functional groups in the surface oxide can play a prominent role in the osseointegration of metallic implant materials.
Colloids and Surfaces B: Biointerfaces | 2011
Daniel E. MacDonald; Bruce E. Rapuano; Hannes C. Schniepp
In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloys surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloys surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50-100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm-cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long-range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples. These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography.
European Journal of Oral Sciences | 2012
Bruce E. Rapuano; Jani Jae Eun Lee; Daniel E. MacDonald
Our laboratory has previously demonstrated that heat (600°C) or radiofrequency plasma glow discharge (RFGD) pretreatment of a titanium alloy (Ti6Al4V) increased the net negative charge of the alloys surface oxide and the attachment of osteoblastic cells to adsorbed fibronectin. The purpose of the current study was to investigate the biological mechanism by which these surface pretreatments enhance the capacity of fibronectin to stimulate osteoblastic cell attachment. Each pretreatment was found to increase the binding (measured by ELISA) of a monoclonal anti-fibronectin Ig to the central integrin-binding domain of adsorbed fibronectin, and to increase the antibodys inhibition of osteogenic cell attachment (measured by hexosaminidase assay). Pretreatments also increased the binding (measured by ELISA) of anti-integrin IgGs to the α(5) and β(1) integrin subunits that became attached to fibronectin during cell incubation. These findings suggest that negatively charged surface oxides of Ti6Al4V cause conformational changes in fibronectin that increase the availability of its integrin-binding domain to α(5) β(1) integrins.
Journal of Periodontal & Implant Science | 2012
Bruce E. Rapuano; Kyle M. Hackshaw; Daniel E. MacDonald
Purpose The purpose of this study was to determine whether increasing the Ti6Al4V surface oxide negative charge through heat (600℃) or radiofrequency plasma glow discharge (RFGD) pretreatment, with or without a subsequent coating with fibronectin, stimulated osteoblast gene marker expression in the MC3T3 osteoprogenitor cell line. Methods Quantitative real-time polymerase chain reaction was used to measure changes over time in the mRNA levels for osteoblast gene markers, including alkaline phosphatase, bone sialoprotein, collagen type I (α1), osteocalcin, osteopontin and parathyroid hormone-related peptide (PTH-rP), and the osteoblast precursor genes Runx2 and osterix. Results Osteoprogenitors began to differentiate earlier on disks that were pretreated with heat or RFGD. The pretreatments increased gene marker expression in the absence of a fibronectin coating. However, pretreatments increased osteoblast gene expression for fibronectin-coated disks more than uncoated disks, suggesting a surface oxide-mediated specific enhancement of fibronectins bioactivity. Heat pretreatment had greater effects on the mRNA expression of genes for PTH-rP, alkaline phosphatase and osteocalcin while RFGD pretreatment had greater effects on osteopontin and bone sialoprotein gene expression. Conclusions The results suggest that heat and RFGD pretreatments of the Ti6Al4V surface oxide stimulated osteoblast differentiation through an enhancement of (a) coated fibronectins bioactivity and (b) the bioactivities of other serum or matrix proteins. The quantitative differences in the effects of the two pretreatments on osteoblast gene marker expression may have arisen from the unique physico-chemical characteristics of each resultant oxide surface. Therefore, engineering the Ti6Al4V surface oxide to become more negatively charged can be used to accelerate osteoblast differentiation through fibronectin-dependent and independent mechanisms.
Journal of Cellular Biochemistry | 2013
Daniel E. MacDonald; Bruce E. Rapuano; Parth Vyas; Joseph M. Lane; Kathleen Meyers; Timothy M. Wright
Orthopedic and dental implants manifest increased failure rates when inserted into low density bone. We determined whether chemical pretreatments of a titanium alloy implant material stimulated new bone formation to increase osseointegration in vivo in trabecular bone using a rat model. Titanium alloy rods were untreated or pretreated with heat (600°C) or radiofrequency plasma glow discharge (RFGD). The rods were then coated with the extracellular matrix protein fibronectin (1 nM) or left uncoated and surgically implanted into the rat femoral medullary cavity. Animals were euthanized 3 or 6 weeks later, and femurs were removed for analysis. The number of trabeculae in contact with the implant surface, surface contact between trabeculae and the implant, and the length and area of bone attached to the implant were measured by histomorphometry. Implant shear strength was measured by a pull‐out test. Both pretreatments and fibronectin enhanced the number of trabeculae bonding with the implant and trabeculae‐to‐implant surface contact, with greater effects of fibronectin observed with pretreated compared to untreated implants. RFGD pretreatment modestly increased implant shear strength, which was highly correlated (r2 = 0.87–0.99) with measures of trabecular bonding for untreated and RFGD‐pretreated implants. In contrast, heat pretreatment increased shear strength 3–5‐fold for both uncoated and fibronectin‐coated implants at 3 and 6 weeks, suggesting a more rapid increase in implant‐femur bonding compared to the other groups. In summary, our findings suggest that the heat and RFGD pretreatments can promote the osseointegration of a titanium alloy implant material. J. Cell. Biochem. 114: 2363–2374, 2013.
Journal of Cellular Biochemistry | 2013
Bruce E. Rapuano; Herman Singh; Adele L. Boskey; Stephen B. Doty; Daniel E. MacDonald
It is believed that orthopedic and implant longevity can be improved by optimizing fixation, or direct bone‐implant contact, through the stimulation of new bone formation around the implant. The purpose of this study was to determine whether heat (600°C) or radiofrequency plasma glow discharge (RFGD) pretreatment of Ti6Al4V stimulated calcium‐phosphate mineral formation in cultures of attached MC3T3 osteoprogenitor cells with or without a fibronectin coating. Calcium‐phosphate mineral was analyzed by flame atomic absorption spectrophotometry, scanning electron microscopy (SEM)/electron dispersive X‐ray microanalysis (EDAX) and Fourier transformed infrared spectroscopy (FTIR). RFGD and heat pretreatments produced a general pattern of increased total soluble calcium levels, although the effect of heat pretreatment was greater than that of RFGD. SEM/EDAX showed the presence of calcium‐and phosphorus‐containing particles on untreated and treated disks that were more numerous on fibronectin‐coated disks. These particles were observed earliest (1 week) on RFGD‐pretreated surfaces. FTIR analyses showed that the heat pretreatment produced a general pattern of increased levels of apatite mineral at 2–4 weeks; a greater effect was observed for fibronectin‐coated disks compared to uncoated disks. The observed findings suggest that heat pretreatment of Ti6Al4V increased the total mass of the mineral formed in MC3T3 osteoprogenitor cell cultures more than RFGD while the latter pretreatment hastened the early deposition of mineral. These findings help to support the hypothesis that the pretreatments enhance the osteoinductive properties of the alloy. J. Cell. Biochem. 114: 1917–1927, 2013.
European Journal of Oral Sciences | 2013
Bruce E. Rapuano; Daniel E. MacDonald
In the current study, the relationship between the structure of the RGD-containing human bone sialoprotein (hBSP) peptide 278-293 and its attachment activity toward osteoblast-like (MC3T3) cells was investigated. This goal was accomplished by examining the comparative cell-attachment activities of several truncated forms of peptide 278-293. Computer modeling of the various peptides was also performed to assess the role of secondary structure in peptide bioactivity. Elimination of tyrosine-278 at the N-terminus resulted in a more dramatic loss of cell-attachment activity compared with the removal of either tyrosine-293 or the arg-ala-tyr (291-293) tripeptide. Although replacement of the RGD (arg-gly-asp) peptide moiety with peptide KAE (lys-ala-glu) resulted in a dramatic loss of cell-attachment activity, a peptide containing RGE (arg-gly-glu) in place of RGD retained 70-85% of the parental peptides attachment activity. These results suggest that the N-terminal RGD-flanking region of hBSP peptide 278-293, in particular the tyrosine-278 residue, represents a second cell-attachment site that stabilizes the RGD-integrin receptor complex. Computer modeling also suggested that a β-turn encompassing RGD or RGE in some of the hBSP peptides may facilitate its binding to integrins by increasing the exposure of the tripeptide. This knowledge may be useful in the future design of biomimetic peptides which are more effective in promoting the attachment of osteogenic cells to implant surfaces in vivo.