Daniel F. Eberl
University of Iowa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel F. Eberl.
Current Biology | 2003
Ritu Sarpal; Sokol V. Todi; Elena Sivan-Loukianova; Seema Shirolikar; Narayan Subramanian; Elizabeth C. Raff; James W. Erickson; Krishanu Ray; Daniel F. Eberl
BACKGROUND Kinesin II-mediated anterograde intraflagellar transport (IFT) is essential for the assembly and maintenance of flagella and cilia in various cell types. Kinesin associated protein (KAP) is identified as the non-motor accessory subunit of Kinesin II, but its role in the corresponding motor function is not understood. RESULTS We show that mutations in the Drosophila KAP (DmKap) gene could eliminate the sensory cilia as well as the sound-evoked potentials of Johnstons organ (JO) neurons. Ultrastructure analysis of these mutants revealed that the ciliary axonemes are absent. Mutations in Klp64D, which codes for a Kinesin II motor subunit in Drosophila, show similar ciliary defects. All these defects are rescued by exclusive expression of DmKAP and KLP64D/KIF3A in the JO neurons of respective mutants. Furthermore, reduced copy number of the DmKap gene was found to enhance the defects of hypomorphic Klp64D alleles. Unexpectedly, however, both the DmKap and the Klp64D mutant adults produce vigorously motile sperm with normal axonemes. CONCLUSIONS KAP plays an essential role in Kinesin II function, which is required for the axoneme growth and maintenance of the cilia in Drosophila type I sensory neurons. However, the flagellar assembly in Drosophila spermatids does not require Kinesin II and is independent of IFT.
Current Opinion in Neurobiology | 1999
Daniel F. Eberl
To hear, insects use diverse external structures, which transform acoustic signals to mechanical ones, coupled to astonishingly uniform mechanosensory transducers, the chordotonal organs. New evidence showing that chordotonal organs and vertebrate auditory hair cells are developmentally related and that chordotonal organs and insect bristle organs are mechanistically related suggests that all these ciliated mechanoreceptors may be derived from the same ancestral molecular mechanotransduction complex. Identification of these elusive molecules will settle this issue.
Nature Neuroscience | 2005
Saurabh Prakash; Jason C. Caldwell; Daniel F. Eberl; Thomas R. Clandinin
Classical cadherins have been proposed to mediate interactions between pre- and postsynaptic cells that are necessary for synapse formation. We provide the first direct, genetic evidence in favor of this model by examining the role of N-cadherin in controlling the pattern of synaptic connections made by photoreceptor axons in Drosophila. N-cadherin is required in both individual photoreceptors and their target neurons for photoreceptor axon extension. Cell-by-cell reconstruction of wild-type photoreceptor axons extending within mosaic patches of mutant target cells shows that N-cadherin mediates attractive interactions between photoreceptors and their targets. This interaction is not limited to those cells that will become the synaptic partners of photoreceptors. Multiple N-cadherin isoforms are produced, but single isoforms can substitute for endogenous N-cadherin activity. We propose that N-cadherin mediates a homophilic, attractive interaction between photoreceptor growth cones and their targets that precedes synaptic partner choice.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Jason C. Caldwell; Matthew M. Miller; Susan Wing; David R. Soll; Daniel F. Eberl
Rhythmic movements, such as peristaltic contraction, are initiated by output from central pattern generator (CPG) networks in the CNS. These oscillatory networks elicit locomotion in the absence of external sensory or descending inputs, but CPG circuits produce more directed and behaviorally relevant movement via peripheral nervous system (PNS) input. Drosophila melanogaster larval locomotion results from patterned muscle contractions moving stereotypically along the body segments, but without PNS feedback, contraction of body segments is uncoordinated. We have dissected the role of a subset of mechanosensory neurons in the larval PNS, the chordotonal organs (chos), in providing sensory feedback to the locomotor CPG circuit with dias (Dynamic Image Analysis System) software. We analyzed mutants carrying cho mutations including atonal, a cho proneural gene, beethoven, a cho cilia class mutant, smetana and touch-insensitive larva B, two axonemal mutants, and 5D10, a weak cho mutant. All cho mutants have defects in gross path morphology compared to controls. These mutants exhibit increased frequency and duration of turning (decision-making) and reduced duration of linear locomotion. Furthermore, cho mutants affect locomotor parameters, including reduced average speed, direction change, and persistence. dias analysis of peristaltic waves indicates that mutants exhibit reduced average speed, positive flow and negative flow, and increased stride period. Thus, cho sensilla are major proprioceptive components that underlie touch sensitivity, locomotion, and peristaltic contraction by providing sensory feedback to the locomotor CPG circuit in larvae.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Yishan Sun; Lei Liu; Yehuda Ben-Shahar; Julie S. Jacobs; Daniel F. Eberl; Michael J. Welsh
Although many animal species sense gravity for spatial orientation, the molecular bases remain uncertain. Therefore, we studied Drosophila melanogaster, which possess an inherent upward movement against gravity-negative geotaxis. Negative geotaxis requires Johnstons organ, a mechanosensory structure located in the antenna that also detects near-field sound. Because channels of the transient receptor potential (TRP) superfamily can contribute to mechanosensory signaling, we asked whether they are important for negative geotaxis. We identified distinct expression patterns for 5 TRP genes; the TRPV genes nanchung and inactive were present in most Johnstons organ neurons, the TRPN gene nompC and the TRPA gene painless were localized to 2 subpopulations of neurons, and the TRPA gene pyrexia was expressed in cap cells that may interact with the neurons. Likewise, mutating specific TRP genes produced distinct phenotypes, disrupting negative geotaxis (painless and pyrexia), hearing (nompC), or both (nanchung and inactive). Our genetic, physiological and behavioral data indicate that the sensory component of negative geotaxis involves multiple TRP genes. The results also distinguish between different mechanosensory modalities and set the stage for understanding how TRP channels contribute to mechanosensation.
Behavioural Processes | 2003
Eran Tauber; Daniel F. Eberl
Acoustic communication during courtship has been extensively studied in many Drosophila species. Here we summarise approaches that have been applied to the study of both song production and hearing. These approaches harnessed a variety of genetic tools available in Drosophila, such as isolation of song or hearing mutants, QTL mapping and transgenesis as well as electrophysiology and behavioural analysis. We also provide a short guide for the methodology used in acoustic studies in Drosophila and discuss prospects and new tools that would benefit future research.
Current Biology | 2008
Eugene Lee; Elena Sivan-Loukianova; Daniel F. Eberl; Maurice J. Kernan
BACKGROUND Conserved intraflagellar transport (IFT) particle proteins and IFT-associated motors are needed to assemble most eukaryotic cilia and flagella. Proteins in an IFT-A subcomplex are generally required for dynein-driven retrograde IFT, from the ciliary tip to the base. We describe novel structural and functional roles for IFT-A proteins in chordotonal organs, insect mechanosensory organs with cilia that are both sensory and motile. RESULTS The reduced mechanoreceptor potential A (rempA) locus of Drosophila encodes the IFT-A component IFT140. Chordotonal cilia are shortened in rempA mutants and an IFT-B protein accumulates in the mutant cilia, consistent with a defect in retrograde IFT. A functional REMPA-YFP fusion protein concentrates at the site of the ciliary dilation (CD), a highly structured axonemal inclusion of hitherto unknown composition and function. The CD is absent in rempA mutants, and REMPA-YFP is undetectable in the absence of another IFT-A protein, IFT122. In a mutant lacking the IFT dynein motor, the CD is disorganized and REMPA-YFP is mislocalized. A TRPV ion channel, required to generate sensory potentials and regulate ciliary motility, is normally localized in the cilia, proximal to the CD. This channel spreads into the distal part of the cilia in dynein mutants and is undetectable in rempA mutants. CONCLUSIONS IFT-A proteins are located at and required by the ciliary dilation, which separates chordotonal cilia into functionally distinct zones. A requirement for IFT140 in stable TRPV channel expression also suggests that IFT-A proteins may mediate preciliary transport of some membrane proteins.
Cellular and Molecular Life Sciences | 2010
Bernd Fritzsch; Daniel F. Eberl; Kirk W. Beisel
In mouse ear development, two bHLH genes, Atoh1 and Neurog1, are essential for hair cell and sensory neuron differentiation. Evolution converted the original simple atonal-dependent neurosensory cell formation program of diploblasts into the derived developmental program of vertebrates that generates two neurosensory cell types, the sensory neuron and the sensory hair cell. This transformation was achieved through gene multiplication in ancestral triploblasts resulting in the expansion of the atonalbHLH gene family. Novel genes of the Neurogenin and NeuroD families are upregulated prior to the expression of Atoh1. Recent data suggest that NeuroD and Neurogenin were lost or their function in neuronal specification reduced in flies, thus changing our perception of the evolution of these genes. This sequence of expression changes was accompanied by modification of the E-box binding sites of these genes to regulate different downstream genes and to form inhibitory loops among each other, thus fine-tuning expression transitions.
Current Biology | 2005
Sokol V. Todi; Josef D. Franke; Daniel P. Kiehart; Daniel F. Eberl
In vertebrates, auditory and vestibular transduction occurs on apical projections (stereocilia) of specialized cells (hair cells). Mutations in myosin VIIA (myoVIIA), an unconventional myosin, lead to deafness and balance anomalies in humans, mice, and zebrafish; individuals are deaf, and stereocilia are disorganized. The exact mechanism through which myoVIIA mutations result in these inner-ear anomalies is unknown. Proposed inner-ear functions for myoVIIA include anchoring transduction channels to the stereocilia membrane, trafficking stereocilia linking components, and anchoring hair cells by associating with adherens junctions. The Drosophila myoVIIA homolog is crinkled (ck). The Drosophila auditory organ, Johnstons organ (JO), is developmentally and functionally related to the vertebrate inner ear. Both derive from modified epithelial cells specified by atonal and spalt homolog expression, and both transduce acoustic mechanical energy (and references therein). Here, we show that loss of ck/myoVIIA function leads to complete deafness in Drosophila by disrupting the integrity of the scolopidia that transduce auditory signals. We demonstrate that ck/myoVIIA functions to organize the auditory organ, that it is functionally required in neuronal and support cells, that it is not required for TRPV channel localization, and that it is not essential for scolopidial-cell-junction integrity.
Genetics | 2010
Ryan G. Kavlie; Maurice J. Kernan; Daniel F. Eberl
Cilia were present in the earliest eukaryotic ancestor and underlie many biological processes ranging from cell motility and propulsion of extracellular fluids to sensory physiology. We investigated the contribution of the touch insensitive larva B (tilB) gene to cilia function in Drosophila melanogaster. Mutants of tilB exhibit dysfunction in sperm flagella and ciliated dendrites of chordotonal organs that mediate hearing and larval touch sensitivity. Mutant sperm axonemes as well as sensory neuron dendrites of Johnstons organ, the flys auditory organ, lack dynein arms. Through deficiency mapping and sequencing candidate genes, we identified tilB mutations in the annotated gene CG14620. A genomic CG14620 transgene rescued deafness and male sterility of tilB mutants. TilB is a 395-amino-acid protein with a conserved N-terminal leucine-rich repeat region at residues 16–164 and a coiled-coil domain at residues 171–191. A tilB-Gal4 transgene driving fluorescently tagged TilB proteins elicits cytoplasmic expression in embryonic chordotonal organs, in Johnstons organ, and in sperm flagella. TilB does not appear to affect tubulin polyglutamylation or polyglycylation. The phenotypes and expression of tilB indicate function in cilia construction or maintenance, but not in intraflagellar transport. This is also consistent with phylogenetic association of tilB homologs with presence of genes encoding axonemal dynein arm components. Further elucidation of tilB functional mechanisms will provide greater understanding of cilia function and will facilitate understanding ciliary diseases.