Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel F. García is active.

Publication


Featured researches published by Daniel F. García.


Functional Ecology | 2015

Beyond species loss: the extinction of ecological interactions in a changing world

Alfonso Valiente-Banuet; Marcelo A. Aizen; Julio M. Alcántara; Juan Arroyo; Andrea A. Cocucci; Mauro Galetti; María B. García; Daniel F. García; José M. Gómez; Pedro Jordano; Rodrigo Medel; Luis Navarro; José Ramón Obeso; Ramona Oviedo; Nelson Ramírez; Pedro J. Rey; Anna Traveset; Miguel Verdú; Regino Zamora

Summary 1. The effects of the present biodiversity crisis have been largely focused on the loss of species. However, a missed component of biodiversity loss that often accompanies or even precedes species disappearance is the extinction of ecological interactions. 2. Here, we propose a novel model that (i) relates the diversity of both species and interactions along a gradient of environmental deterioration and (ii) explores how the rate of loss of ecological functions, and consequently of ecosystem services, can be accelerated or restrained depending on how the rate of species loss covaries with the rate of interactions loss. 3. We find that the loss of species and interactions are decoupled, such that ecological interactions are often lost at a higher rate. This implies that the loss of ecological interactions may occur well before species disappearance, affecting species functionality and ecosystems services at a faster rate than species extinctions. We provide a number of empirical case studies illustrating these points. 4. Our approach emphasizes the importance of focusing on species interactions as the major biodiversity component from which the ‘health’ of ecosystems depends.


Forest Ecology and Management | 2003

Impact of vertebrate acorn- and seedling-predators on a Mediterranean Quercus pyrenaica forest

José M. Gómez; Daniel F. García; Regino Zamora

We have experimentally investigated the impact of biotic factors, acting at the seed and seedling stages, on a Quercus pyrenaica forest in the Sierra Nevada mountains (SE Spain). We monitored the natural establishment of the oak for 3 years in two forest plots and two shrubland plots, by counting seedlings and juveniles. In addition, we established several experiments in these plots to examine acorn and seedling survival, while also considering the microhabitat effect on survival probability. Dispersed acorns were quickly consumed by several species of predators, particularly wild boar (Sus scrofa) and woodmouse (Apodemus sylvaticus). Less than 4% of the experimental acorns survived to produce seedlings, even when they were buried 4 cm in soil, simulating caches. No effect of microhabitat was found on predation, and thus no safe site appears to exist for Q. pyrenaica acorns in the study area. Some 98% of the 1000 experimental seedlings were killed by herbivores, notably woodmice, wild boar, and domestic and wild ungulates. Seedling survival varied spatially, being significantly higher under shrubs (4%) than in any other microhabitat (less than 0.5%). Both acorn and seedling survival were much lower in the shrublands than in the forests. In shrubland plots, the main agent of seedling mortality was trampling by domestic ungulates foraging in herds. This study suggests that the regeneration of Q. pyrenaica forests in Mediterranean mountains can be limited by herbivores acting at several life-history stages. # 2002 Elsevier Science B.V. All rights reserved.


real time systems symposium | 2002

Stochastic analysis of periodic real-time systems

José Luis Díaz; Daniel F. García; Kanghee Kim; Chang-Gun Lee; Lucia Lo Bello; José M. López; Sang Lyul Min; O. Mirabella

This paper describes a stochastic analysis method for general periodic real-time systems. The proposed method accurately computes the response time distribution of each task in the system, thus making it possible to determine the deadline miss probability of individual tasks, even for systems with maximum utilization factor greater than one. The method uniformly covers both fixed-priority scheduling (such as rate monotonic) as well as dynamic-priority scheduling (such as earliest deadline first) and can handle arbitrary relative deadlines and execution time distributions. The accuracy of the method is proven by comparing the results from the analysis with those obtained from simulations, as well as other methodologies in the literature.


Real-time Systems | 2004

Utilization Bounds for EDF Scheduling on Real-Time Multiprocessor Systems

José M. López; José Luis Díaz; Daniel F. García

The utilization bound for earliest deadline first (EDF) scheduling is extended from uniprocessors to homogeneous multiprocessor systems with partitioning strategies. First results are provided for a basic task model, which includes periodic and independent tasks with deadlines equal to periods. Since the multiprocessor utilization bounds depend on the allocation algorithm, different allocation algorithms have been considered, ranging from simple heuristics to optimal allocation algorithms. As multiprocessor utilization bounds for EDF scheduling depend strongly on task sizes, all these bounds have been obtained as a function of a parameter which takes task sizes into account. Theoretically, the utilization bounds for multiprocessor EDF scheduling can be considered a partial solution to the bin-packing problem, which is known to be NP-complete. The basic task model is extended to include resource sharing, release jitter, deadlines less than periods, aperiodic tasks, non-preemptive sections, context switches, and mode changes.


Conservation Biology | 2010

Birds as suppliers of seed dispersal in temperate ecosystems: conservation guidelines from real-world landscapes.

Daniel F. García; Regino Zamora; Guillermo C. Amico

Seed dispersal by animals is considered a pivotal ecosystem function that drives plant-community dynamics in natural habitats and vegetation recovery in human-altered landscapes. Nevertheless, there is a lack of suitable ecological knowledge to develop basic conservation and management guidelines for this ecosystem service. Essential questions, such as how well the abundance of frugivorous animals predicts seeding function in different ecosystems and how anthropogenic landscape heterogeneity conditions the role of dispersers, remain poorly answered. In three temperate ecosystems, we studied seed dispersal by frugivorous birds in landscape mosaics shaped by human disturbance. By applying a standardized design across systems, we related the frequency of occurrence of bird-dispersed seeds throughout the landscape to the abundance of birds, the habitat features, and the abundance of fleshy fruits. Abundance of frugivorous birds in itself predicted the occurrence of dispersed seeds throughout the landscape in all ecosystems studied. Even those landscape patches impoverished due to anthropogenic disturbance received some dispersed seeds when visited intensively by birds. Nonetheless, human-caused landscape degradation largely affected seed-deposition patterns by decreasing cover of woody vegetation or availability of fruit resources that attracted birds and promoted seed dispersal. The relative role of woody cover and fruit availability in seed dispersal by birds differed among ecosystems. Our results suggest that to manage seed dispersal for temperate ecosystem preservation or restoration one should consider abundance of frugivorous birds as a surrogate of landscape-scale seed dispersal and an indicator of patch quality for the dispersal function; woody cover and fruit resource availability as key landscape features that drive seedfall patterns; and birds as mobile links that connect landscape patches of different degrees of degradation and habitat quality via seed deposition.


machine vision applications | 2012

Fast and robust laser stripe extraction for 3D reconstruction in industrial environments

Rubén Usamentiaga; Julio Molleda; Daniel F. García

The use of 3D reconstruction based on active laser triangulation techniques is very complex in industrial environments. The main problem is that most of these techniques are based on laser stripe extraction methods which are highly sensitive to noise, which is virtually inevitable in these conditions. In industrial environments, variable luminance, reflections which show up in the images as noise, and uneven surfaces are common. These factors modify the shape of the laser profile. This work proposes a fast, accurate, and robust method to extract laser stripes in industrial environments. Specific procedures are proposed to extract the laser stripe projected on the background, using a boundary linking process, and on the foreground, using an improved Split-and-Merge approach with different approximation functions including linear, quadratic, and Akima splines. Also, a novel procedure to automatically define the region of interest in the image is proposed. The real-time performance of the proposed method is analyzed by measuring the time taken by the tasks involved in their application. Finally, the proposed extraction method is applied to two real applications: 3D reconstruction of steel strips and weld seam tracking.


Conservation Biology | 2010

Effects of Forest Fragmentation on Seed Dispersal and Seedling Establishment in Ornithochorous Trees

José M. Herrera; Daniel F. García

Habitat fragmentation increases seed dispersal limitation across the landscape and may also affect subsequent demographic stages such as seedling establishment. Thus, the development of adequate plans for forest restoration requires an understanding of mechanisms by which fragmentation hampers seed delivery to deforested areas and knowledge of how fragmentation affects the relationship between seed-deposition patterns and seedling establishment. We evaluated the dispersal and recruitment of two bird-dispersed, fleshy-fruited tree species (Crataegus monogyna and Ilex aquifolium) in fragmented secondary forests of northern Spain. Forest fragmentation reduced the probability of seed deposition for both trees because of decreased availability of woody perches and fruit-rich neighborhoods for seed dispersers, rather than because of reductions in tree cover by itself. The effects of fragmentation went beyond effects on the dispersal stage in Crataegus because seedling establishment was proportional to the quantities of bird-dispersed seeds arriving at microsites. In contrast, postdispersal mortality in Ilex was so high that it obscured the seed-to-seedling transition. These results suggest that the effects of fragmentation are not necessarily consistent across stages of recruitment across species. Habitat management seeking to overcome barriers to forest recovery must include the preservation, and even the planting, of fleshy-fruited trees in the unforested matrix as a measure to encourage frugivorous birds to enter into open and degraded areas. An integrative management strategy should also explicitly consider seed-survival expectancies at microhabitats to preserve plant-population dynamics and community structure in fragmented landscapes.


Real-time Systems | 2008

Stochastic analysis of real-time systems under preemptive priority-driven scheduling

José M. López; José Luis Díaz; Joaquín Entrialgo; Daniel F. García

Exact stochastic analysis of most real-time systems under preemptive priority-driven scheduling is unaffordable in current practice. Even assuming a periodic and independent task model, the exact calculation of the response time distribution of tasks is not possible except for simple task sets. Furthermore, in practice, tasks introduce complexities such as release jitter, blocking in shared resources, etc., which cannot be handled by the periodic independent task set model.In order to solve these problems, exact analysis must be abandoned for an approximated analysis. However, in the real-time field, approximations must not be optimistic, i.e. the deadline miss ratios predicted by the approximated analysis must be greater than or equal to the exact ones. In order to achieve this goal, the concept of pessimism needs to be mathematically defined in the stochastic context, and the pessimistic properties of the analysis carefully derived.This paper provides a mathematical framework for reasoning about stochastic pessimism, and obtaining mathematical properties of the analysis and its approximations. This framework allows us to prove the safety of several proposed approximations and extensions. We analyze and solve some practical problems in the implementation of the stochastic analysis, such as the problem of the finite precision arithmetic or the truncation of the probability functions. In addition, we extend the basic model in several ways, such as the inclusion of shared resources, release jitter or non-preemptive sections.


IEEE Transactions on Parallel and Distributed Systems | 2004

Minimum and maximum utilization bounds for multiprocessor rate monotonic scheduling

José M. López; José Luis Díaz; Daniel F. García

The utilization bound for real-time rate monotonic (RM) scheduling on uniprocessors is extended to multiprocessors with partitioning-based scheduling. This allows fast schedulability tests to be performed on multiprocessors and quantifies the influence of key parameters, such as the number of processors and task sizes on the schedulability of the system. The multiprocessor utilization bound is a function of the allocation algorithm, so among all the allocation algorithms there exists at least one allocation algorithm providing the minimum multiprocessor utilization bound, and one allocation algorithm providing the maximum multiprocessor utilization bound. We prove that the multiprocessor utilization bound associated with the allocation heuristic worst fit (WF) coincides with that minimum if we use Liu and Laylands bound (LLB) as the uniprocessor schedulability condition. In addition, we present a class of allocation algorithms sharing the same multiprocessor utilization bound which coincides with the aforementioned maximum using LLB. The heuristics first fit decreasing (FFD) and best fit decreasing (BFD) belong to this class. Thus, not even an optimal allocation algorithm can guarantee a higher multiprocessor utilization bound than that of FFD and BFD using LLB. Finally, the pessimism of the multiprocessor utilization bounds is estimated through extensive simulations.


Real-time Systems | 2003

Utilization Bounds for Multiprocessor Rate-Monotonic Scheduling

José M. López; Manuel García; José Luis Díaz; Daniel F. García

In this paper, we extend Liu and Laylands utilization bound for fixed priority scheduling on uniprocessors to homogeneous multiprocessor systems under a partitioning strategy. Assuming that tasks are pre-emptively scheduled on each processor according to fixed priorities assigned by the Rate-Monotonic policy, and allocated to processors by the First Fit algorithm, we prove that the utilization bound is (n−1)(21/2−1)+(m−n+1)(21/(m−n+1)−1), where m and n are the number of tasks and processors, respectively. This bound is valid for arbitrary utilization factors. Moreover, if all the tasks have utilization factors under a value α, the previous bound is raised and the new utilization bound considering α is calculated. Finally, simulation provides the average-case behavior.

Collaboration


Dive into the Daniel F. García's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge