Daniel F. Gilbert
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel F. Gilbert.
The Journal of Neuroscience | 2010
Seo-Kyung Chung; Jean-François Vanbellinghen; Jonathan G. L. Mullins; Angela Robinson; Janina Hantke; C. L. Hammond; Daniel F. Gilbert; Michael Freilinger; Monique M. Ryan; Michael C. Kruer; Amira Masri; Candan Gürses; Colin D. Ferrie; Kirsten Harvey; Rita Shiang; John Christodoulou; Frederick Andermann; Eva Andermann; Rhys Huw Thomas; Robert J. Harvey; Joseph W. Lynch; Mark I. Rees
Hyperekplexia is a rare, but potentially fatal, neuromotor disorder characterized by exaggerated startle reflexes and hypertonia in response to sudden, unexpected auditory or tactile stimuli. This disorder is primarily caused by inherited mutations in the genes encoding the glycine receptor (GlyR) α1 subunit (GLRA1) and the presynaptic glycine transporter GlyT2 (SLC6A5). In this study, systematic DNA sequencing of GLRA1 in 88 new unrelated human hyperekplexia patients revealed 19 sequence variants in 30 index cases, of which 21 cases were inherited in recessive or compound heterozygote modes. This indicates that recessive hyperekplexia is far more prevalent than previous estimates. From the 19 GLRA1 sequence variants, we have investigated the functional effects of 11 novel and 2 recurrent mutations. The expression levels and functional properties of these hyperekplexia mutants were analyzed using a high-content imaging system and patch-clamp electrophysiology. When expressed in HEK293 cells, either as homomeric α1 or heteromeric α1β GlyRs, subcellular localization defects were the major mechanism underlying recessive mutations. However, mutants without trafficking defects typically showed alterations in the glycine sensitivity suggestive of disrupted receptor function. This study also reports the first hyperekplexia mutation associated with a GlyR leak conductance, suggesting tonic channel opening as a new mechanism in neuronal ligand-gated ion channels.
Journal of Cell Biology | 2013
Stefanie Kuhns; Kerstin Schmidt; Jürgen Reymann; Daniel F. Gilbert; Annett Neuner; Birgit Hub; Ricardo Carvalho; Philipp Wiedemann; Hanswalter Zentgraf; Holger Erfle; Ursula Klingmüller; Michael Boutros; Gislene Pereira
A functional screen identified MARK4 as a positive regulator of axonemal extension and ciliogenesis via its interaction with the mother centriolar protein ODF2.
Bioorganic & Medicinal Chemistry | 2010
Walter Balansa; Robiul Islam; Frank Fontaine; Andrew M. Piggott; Hua Zhang; Timothy I. Webb; Daniel F. Gilbert; Joseph W. Lynch; Robert J. Capon
Screening an extract library of >2500 southern Australian and Antarctic marine invertebrates and algae for modulators of glycine receptor (GlyR) chloride channels identified three Irciniidae sponges that yielded new examples of a rare class of glycinyl lactam sesterterpene, ircinialactam A, 8-hydroxyircinialactam A, 8-hydroxyircinialactam B, ircinialactam C, ent-ircinialactam C and ircinialactam D. Structure-activity relationship (SAR) investigations revealed a new pharmacophore with potent and subunit selective modulatory properties against alpha1 and alpha3 GlyR isoforms. Such GlyR modulators have potential application as pharmacological tools, and as leads for the development of GlyR targeting therapeutics to treat chronic inflammatory pain, epilepsy, spasticity and hyperekplexia.
Nucleic Acids Research | 2013
Kathleen Börner; Dominik Niopek; Gabriella Cotugno; Michaela Kaldenbach; Teresa Pankert; Joschka Willemsen; Xian Zhang; Nina Schürmann; Stefan Mockenhaupt; Andrius Serva; Marie Sophie Hiet; Ellen Wiedtke; Mirco Castoldi; Vytaute Starkuviene; Holger Erfle; Daniel F. Gilbert; Ralf Bartenschlager; Michael Boutros; Marco Binder; Konrad L. Streetz; Hans-Georg Kräusslich; Dirk Grimm
As the only mammalian Argonaute protein capable of directly cleaving mRNAs in a small RNA-guided manner, Argonaute-2 (Ago2) is a keyplayer in RNA interference (RNAi) silencing via small interfering (si) or short hairpin (sh) RNAs. It is also a rate-limiting factor whose saturation by si/shRNAs limits RNAi efficiency and causes numerous adverse side effects. Here, we report a set of versatile tools and widely applicable strategies for transient or stable Ago2 co-expression, which overcome these concerns. Specifically, we engineered plasmids and viral vectors to co-encode a codon-optimized human Ago2 cDNA along with custom shRNAs. Furthermore, we stably integrated this Ago2 cDNA into a panel of standard human cell lines via plasmid transfection or lentiviral transduction. Using various endo- or exogenous targets, we demonstrate the potential of all three strategies to boost mRNA silencing efficiencies in cell culture by up to 10-fold, and to facilitate combinatorial knockdowns. Importantly, these robust improvements were reflected by augmented RNAi phenotypes and accompanied by reduced off-targeting effects. We moreover show that Ago2/shRNA-co-encoding vectors can enhance and prolong transgene silencing in livers of adult mice, while concurrently alleviating hepatotoxicity. Our customizable reagents and avenues should broadly improve future in vitro and in vivo RNAi experiments in mammalian systems.
Frontiers in Molecular Neuroscience | 2009
Daniel F. Gilbert; Robiul Islam; Timothy Lynagh; Joseph W. Lynch; Timothy I. Webb
The inhibitory glycine receptor (GlyR) is a member of the Cys-loop receptor family that mediates inhibitory neurotransmission in the central nervous system. These receptors are emerging as potential drug targets for inflammatory pain, immunomodulation, spasticity and epilepsy. Antagonists that specifically inhibit particular GlyR isoforms are also required as pharmacological probes for elucidating the roles of particular GlyR isoforms in health and disease. Although a substantial number of both positive and negative GlyR modulators have been identified, very few of these are specific for the GlyR over other receptor types. Thus, the potential of known compounds as either therapeutic leads or pharmacological probes is limited. It is therefore surprising that there have been few published studies describing attempts to discover novel GlyR isoform-specific modulators. The first aim of this review is to consider various methods for efficiently screening compounds against these receptors. We conclude that an anion sensitive yellow fluorescent protein is optimal for primary screening and that automated electrophysiology of cells stably expressing GlyRs is useful for confirming hits and quantitating the actions of identified compounds. The second aim of this review is to demonstrate how these techniques are used in our laboratory for the purpose of both discovering novel GlyR-active compounds and characterizing their binding sites. We also describe a reliable, cost effective method for transfecting HEK293 cells in single wells of a 384-well plate using nanogram quantities of plasmid DNA.
Organic and Biomolecular Chemistry | 2013
Walter Balansa; Robiul Islam; Frank Fontaine; Andrew M. Piggott; Hua Zhang; Xue Xiao; Timothy I. Webb; Daniel F. Gilbert; Joseph W. Lynch; Robert J. Capon
Bioassay guided fractionation of three southern Australian marine sponges of the genus Psammocinia, selected for their ability to modulate glycine-gated chloride channel receptors (GlyRs), yielded the rare marine sesterterpenes (-)-ircinianin (1) and (-)-ircinianin sulfate (2), along with the new biosynthetically related metabolites (-)-ircinianin lactam A (3), (-)-ircinianin lactam A sulfate (4), (-)-oxoircinianin (5), (-)-oxoircinianin lactam A (6) and (-)-ircinianin lactone A (7). Acetylation of 1 returned (-)-ircinianin acetate (8). Whole cell patch-clamp electrophysiology on 1-8 established 3 as an exceptionally potent and selective α3 GlyR potentiator, and 6 as a selective α1 GlyR potentiator. The discovery and characterization of sesterterpenes 1-8, and in particular the glycinyl-lactams 3 and 6, provide valuable new insights into GlyR pharmacology. These insights have the potential to inform and inspire the development of new molecular tools to probe GlyR distribution and function, and therapeutics to treat a wide array of GlyR mediated diseases and disorders.
PLOS ONE | 2011
Daniel F. Gilbert; Gerrit Erdmann; Xian Zhang; Anja Fritzsche; Kubilay Demir; Andreas Jaedicke; Katja Muehlenberg; Erich E. Wanker; Michael Boutros
Cell-based high-throughput RNAi screening has become a powerful research tool in addressing a variety of biological questions. In RNAi screening, one of the most commonly applied assay system is measuring the fitness of cells that is usually quantified using fluorescence, luminescence and absorption-based readouts. These methods, typically implemented and scaled to large-scale screening format, however often only yield limited information on the cell fitness phenotype due to evaluation of a single and indirect physiological indicator. To address this problem, we have established a cell fitness multiplexing assay which combines a biochemical approach and two fluorescence-based assaying methods. We applied this assay in a large-scale RNAi screening experiment with siRNA pools targeting the human kinome in different modified HEK293 cell lines. Subsequent analysis of ranked fitness phenotypes assessed by the different assaying methods revealed average phenotype intersections of 50.7±2.3%–58.7±14.4% when two indicators were combined and 40–48% when a third indicator was taken into account. From these observations we conclude that combination of multiple fitness measures may decrease false-positive rates and increases confidence for hit selection. Our robust experimental and analytical method improves the classical approach in terms of time, data comprehensiveness and cost.
Biosensors and Bioelectronics | 2015
Maria P. Walzik; Verena Vollmar; Theresa Lachnit; Helmut Dietz; Susanne Haug; Holger Bachmann; Moritz Fath; Daniel Aschenbrenner; Sepideh Abolpour Mofrad; Oliver Friedrich; Daniel F. Gilbert
Time-resolved visualization and analysis of slow dynamic processes in living cells has revolutionized many aspects of in vitro cellular studies. However, existing technology applied to time-resolved live-cell microscopy is often immobile, costly and requires a high level of skill to use and maintain. These factors limit its utility to field research and educational purposes. The recent availability of rapid prototyping technology makes it possible to quickly and easily engineer purpose-built alternatives to conventional research infrastructure which are low-cost and user-friendly. In this paper we describe the prototype of a fully automated low-cost, portable live-cell imaging system for time-resolved label-free visualization of dynamic processes in living cells. The device is light-weight (3.6 kg), small (22 × 22 × 22 cm) and extremely low-cost (<€1250). We demonstrate its potential for biomedical use by long-term imaging of recombinant HEK293 cells at varying culture conditions and validate its ability to generate time-resolved data of high quality allowing for analysis of time-dependent processes in living cells. While this work focuses on long-term imaging of mammalian cells, the presented technology could also be adapted for use with other biological specimen and provides a general example of rapidly prototyped low-cost biosensor technology for application in life sciences and education.
Journal of Biological Chemistry | 2010
Florian M. Gebhardt; Ann D. Mitrovic; Daniel F. Gilbert; Robert J. Vandenberg; Joseph W. Lynch; P. R. Dodd
The glial transporter excitatory amino acid transporter-2 (EAAT2) is the main mediator of glutamate clearance in brain. The wild-type transporter (EAAT2wt) forms trimeric membrane complexes in which each protomer functions autonomously. Several EAAT2 variants are found in control and Alzheimer-diseased human brains; their expression increases with pathological severity. These variants might alter EAAT2wt-mediated transport by abrogating membrane trafficking, or by changing the configuration or functionality of the assembled transporter complex. HEK293 cells were transfected with EAAT2wt; EAAT2b, a C-terminal variant; or either of two exon-skipping variants: alone or in combination. Surface biotinylation studies showed that only the exon-7 deletion variant was not trafficked to the membrane when transfected alone, and that all variants could reach the membrane when co-transfected with EAAT2wt. Fluorescence resonance energy transfer (FRET) studies showed that co-transfected EAAT2wt and EAAT2 splice variants were expressed in close proximity. Glutamate transporter function was measured using a whole cell patch clamp technique, or by changes in membrane potential indexed by a voltage-sensitive fluorescent dye (FMP assay): the two methods gave comparable results. Cells transfected with EAAT2wt or EAAT2b showed glutamate-dependent membrane potential changes consistent with functional expression. Cells transfected with EAAT2 exon-skipping variants alone gave no response to glutamate. Co-transfection of EAAT2wt (or EAAT2b) and splice variants in various ratios significantly raised glutamate EC50 and decreased Hill coefficients. We conclude that exon-skipping variants form heteromeric complexes with EAAT2wt or EAAT2b that traffic to the membrane but show reduced glutamate-dependent activity. This could allow glutamate to accumulate extracellularly and promote excitotoxicity.
Cytometry Part A | 2009
Daniel F. Gilbert; John C. Wilson; Virginia Nink; Joseph W. Lynch; Geoffrey W. Osborne
Flow cytometry is an important drug discovery tool because it permits high‐content multiparameter analysis of individual cells. A new method dramatically enhanced screening throughput by multiplexing many discrete fixed cell populations; however, this method is not suited to assays requiring functional cellular responses. HEK293 cells were transfected with unique mutant glycine receptors. Mutant receptor expression was confirmed by coexpression of yellow fluorescent protein (YFP). Commercially available cell‐permeant dyes were used to label each glycine receptor expressing mutant with a unique optical code. All encoded cell lines were combined in a single tube and analyzed on a flow cytometer simultaneously before and after the addition of glycine receptor agonist. We decoded multiplexed cells that expressed functionally distinct glycine receptor chloride channels and analyzed responses to glycine in terms of chloride‐sensitive YFP expression. Here, data provided by flow cytometry can be used to discriminate between functional and nonfunctional mutations in the glycine receptor, a process accelerated by the use of multiplexing. Further, this data correlates to data generated using a microscopy‐based technique. The present study demonstrates multiplexed labeling of live cells, to enable cell populations to be subject to further cell culture and experimentation, and compares the results with those obtained using live cell microscopy.