Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel F. Gudbjartsson is active.

Publication


Featured researches published by Daniel F. Gudbjartsson.


Nature Genetics | 2002

A high-resolution recombination map of the human genome

Augustine Kong; Daniel F. Gudbjartsson; Jesus Sainz; Gudrun M. Jonsdottir; Sigurjon A. Gudjonsson; Bjorgvin Richardsson; Sigrun Sigurdardottir; John Barnard; Bjorn Hallbeck; Gisli Masson; Adam Shlien; Stefan Palsson; Michael L. Frigge; Thorgeir E. Thorgeirsson; Jeffrey R. Gulcher; Kari Stefansson

Determination of recombination rates across the human genome has been constrained by the limited resolution and accuracy of existing genetic maps and the draft genome sequence. We have genotyped 5,136 microsatellite markers for 146 families, with a total of 1,257 meiotic events, to build a high-resolution genetic map meant to: (i) improve the genetic order of polymorphic markers; (ii) improve the precision of estimates of genetic distances; (iii) correct portions of the sequence assembly and SNP map of the human genome; and (iv) build a map of recombination rates. Recombination rates are significantly correlated with both cytogenetic structures (staining intensity of G bands) and sequence (GC content, CpG motifs and poly(A)/poly(T) stretches). Maternal and paternal chromosomes show many differences in locations of recombination maxima. We detected systematic differences in recombination rates between mothers and between gametes from the same mother, suggesting that there is some underlying component determined by both genetic and environmental factors that affects maternal recombination rates.


Nature | 2008

Large recurrent microdeletions associated with schizophrenia.

Hreinn Stefansson; Dan Rujescu; Sven Cichon; Olli Pietiläinen; Andres Ingason; Stacy Steinberg; Ragnheidur Fossdal; Engilbert Sigurdsson; T. Sigmundsson; Jacobine E. Buizer-Voskamp; Thomas V O Hansen; Klaus D. Jakobsen; Pierandrea Muglia; Clyde Francks; Paul M. Matthews; Arnaldur Gylfason; Bjarni V. Halldórsson; Daniel F. Gudbjartsson; Thorgeir E. Thorgeirsson; Asgeir Sigurdsson; Adalbjorg Jonasdottir; Aslaug Jonasdottir; Asgeir Björnsson; Sigurborg Mattiasdottir; Thorarinn Blondal; Magnus Haraldsson; Brynja B. Magnusdottir; Ina Giegling; Hans-Jürgen Möller; Annette M. Hartmann

Reduced fecundity, associated with severe mental disorders, places negative selection pressure on risk alleles and may explain, in part, why common variants have not been found that confer risk of disorders such as autism, schizophrenia and mental retardation. Thus, rare variants may account for a larger fraction of the overall genetic risk than previously assumed. In contrast to rare single nucleotide mutations, rare copy number variations (CNVs) can be detected using genome-wide single nucleotide polymorphism arrays. This has led to the identification of CNVs associated with mental retardation and autism. In a genome-wide search for CNVs associating with schizophrenia, we used a population-based sample to identify de novo CNVs by analysing 9,878 transmissions from parents to offspring. The 66 de novo CNVs identified were tested for association in a sample of 1,433 schizophrenia cases and 33,250 controls. Three deletions at 1q21.1, 15q11.2 and 15q13.3 showing nominal association with schizophrenia in the first sample (phase I) were followed up in a second sample of 3,285 cases and 7,951 controls (phase II). All three deletions significantly associate with schizophrenia and related psychoses in the combined sample. The identification of these rare, recurrent risk variants, having occurred independently in multiple founders and being subject to negative selection, is important in itself. CNV analysis may also point the way to the identification of additional and more prevalent risk variants in genes and pathways involved in schizophrenia.


American Journal of Human Genetics | 2002

Neuregulin 1 and Susceptibility to Schizophrenia

Hreinn Stefansson; Engilbert Sigurdsson; Valgerdur Steinthorsdottir; Soley Bjornsdottir; T. Sigmundsson; Shyamali Ghosh; J Brynjolfsson; Steinunn Gunnarsdottir; Ómar Ívarsson; Thomas T. Chou; Omar Hjaltason; Birgitta Birgisdottir; Helgi Jonsson; Vala G. Gudnadottir; Elsa Gudmundsdottir; Asgeir Björnsson; Brynjólfur Ingvarsson; Andres Ingason; Sigmundur Sigfússon; Hronn Hardardottir; Richard P. Harvey; Donna Lai; Mingdong Zhou; Daniela Brunner; Vincent Mutel; Acuna Gonzalo; Greg Lemke; Jesus Sainz; Gardar Johannesson; Thorkell Andresson

The cause of schizophrenia is unknown, but it has a significant genetic component. Pharmacologic studies, studies of gene expression in man, and studies of mouse mutants suggest involvement of glutamate and dopamine neurotransmitter systems. However, so far, strong association has not been found between schizophrenia and variants of the genes encoding components of these systems. Here, we report the results of a genomewide scan of schizophrenia families in Iceland; these results support previous work, done in five populations, showing that schizophrenia maps to chromosome 8p. Extensive fine-mapping of the 8p locus and haplotype-association analysis, supplemented by a transmission/disequilibrium test, identifies neuregulin 1 (NRG1) as a candidate gene for schizophrenia. NRG1 is expressed at central nervous system synapses and has a clear role in the expression and activation of neurotransmitter receptors, including glutamate receptors. Mutant mice heterozygous for either NRG1 or its receptor, ErbB4, show a behavioral phenotype that overlaps with mouse models for schizophrenia. Furthermore, NRG1 hypomorphs have fewer functional NMDA receptors than wild-type mice. We also demonstrate that the behavioral phenotypes of the NRG1 hypomorphs are partially reversible with clozapine, an atypical antipsychotic drug used to treat schizophrenia.


Science | 2007

A Common Variant on Chromosome 9p21 Affects the Risk of Myocardial Infarction

Anna Helgadottir; Gudmar Thorleifsson; Andrei Manolescu; Solveig Gretarsdottir; Thorarinn Blondal; Aslaug Jonasdottir; Adalbjorg Jonasdottir; Asgeir Sigurdsson; Adam Baker; Arnar Palsson; Gisli Masson; Daniel F. Gudbjartsson; Kristinn P. Magnusson; Karl Andersen; Allan I. Levey; Valgerdur M. Backman; Sigurborg Matthiasdottir; Thorbjorg Jonsdottir; Stefan Palsson; Helga Einarsdottir; Steinunn Gunnarsdottir; Arnaldur Gylfason; Viola Vaccarino; W. Craig Hooper; Muredach P. Reilly; Christopher B. Granger; Harland Austin; Daniel J. Rader; Svati H. Shah; Arshed A. Quyyumi

The global endemic of cardiovascular diseases calls for improved risk assessment and treatment. Here, we describe an association between myocardial infarction (MI) and a common sequence variant on chromosome 9p21. This study included a total of 4587 cases and 12,767 controls. The identified variant, adjacent to the tumor suppressor genes CDKN2A and CDKN2B, was associated with the disease with high significance. Approximately 21% of individuals in the population are homozygous for this variant, and their estimated risk of suffering myocardial infarction is 1.64 times as great as that of noncarriers. The corresponding risk is 2.02 times as great for early-onset cases. The population attributable risk is 21% for MI in general and 31% for early-onset cases.


Nature | 2008

A Variant Associated with Nicotine Dependence, Lung Cancer and Peripheral Arterial Disease

Thorgeir E. Thorgeirsson; Frank Geller; Patrick Sulem; Thorunn Rafnar; Anna Wiste; Kristinn P. Magnusson; Andrei Manolescu; Gudmar Thorleifsson; Hreinn Stefansson; Andres Ingason; Simon N. Stacey; Jon Thor Bergthorsson; Steinunn Thorlacius; Julius Gudmundsson; Thorlakur Jonsson; Margret Jakobsdottir; Jona Saemundsdottir; Olof Olafsdottir; Larus J. Gudmundsson; Gyda Bjornsdottir; Kristleifur Kristjansson; Halla Skuladottir; Helgi J. Ísaksson; Tomas Gudbjartsson; Gregory T. Jones; Thomas Mueller; Anders Gottsäter; Andrea Flex; Katja K. Aben; Femmie de Vegt

Smoking is a leading cause of preventable death, causing about 5 million premature deaths worldwide each year. Evidence for genetic influence on smoking behaviour and nicotine dependence (ND) has prompted a search for susceptibility genes. Furthermore, assessing the impact of sequence variants on smoking-related diseases is important to public health. Smoking is the major risk factor for lung cancer (LC) and is one of the main risk factors for peripheral arterial disease (PAD). Here we identify a common variant in the nicotinic acetylcholine receptor gene cluster on chromosome 15q24 with an effect on smoking quantity, ND and the risk of two smoking-related diseases in populations of European descent. The variant has an effect on the number of cigarettes smoked per day in our sample of smokers. The same variant was associated with ND in a previous genome-wide association study that used low-quantity smokers as controls, and with a similar approach we observe a highly significant association with ND. A comparison of cases of LC and PAD with population controls each showed that the variant confers risk of LC and PAD. The findings provide a case study of a gene–environment interaction, highlighting the role of nicotine addiction in the pathology of other serious diseases.


Nature | 2008

Genetics of gene expression and its effect on disease.

Valur Emilsson; Gudmar Thorleifsson; Bin Zhang; Amy Leonardson; Florian Zink; Jun Zhu; Sonia Carlson; Agnar Helgason; G. Bragi Walters; Steinunn Gunnarsdottir; Magali Mouy; Valgerdur Steinthorsdottir; Gudrun H. Eiriksdottir; Gyda Bjornsdottir; Inga Reynisdottir; Daniel F. Gudbjartsson; Anna Helgadottir; Aslaug Jonasdottir; Adalbjorg Jonasdottir; Unnur Styrkarsdottir; Solveig Gretarsdottir; Kristinn P. Magnusson; Hreinn Stefansson; Ragnheidur Fossdal; Kristleifur Kristjansson; Hjörtur Gislason; Tryggvi Stefansson; Björn Geir Leifsson; Unnur Thorsteinsdottir; John Lamb

Common human diseases result from the interplay of many genes and environmental factors. Therefore, a more integrative biology approach is needed to unravel the complexity and causes of such diseases. To elucidate the complexity of common human diseases such as obesity, we have analysed the expression of 23,720 transcripts in large population-based blood and adipose tissue cohorts comprehensively assessed for various phenotypes, including traits related to clinical obesity. In contrast to the blood expression profiles, we observed a marked correlation between gene expression in adipose tissue and obesity-related traits. Genome-wide linkage and association mapping revealed a highly significant genetic component to gene expression traits, including a strong genetic effect of proximal (cis) signals, with 50% of the cis signals overlapping between the two tissues profiled. Here we demonstrate an extensive transcriptional network constructed from the human adipose data that exhibits significant overlap with similar network modules constructed from mouse adipose data. A core network module in humans and mice was identified that is enriched for genes involved in the inflammatory and immune response and has been found to be causally associated to obesity-related traits.


Nature Genetics | 2009

Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity

Gudmar Thorleifsson; G. Bragi Walters; Daniel F. Gudbjartsson; Valgerdur Steinthorsdottir; Patrick Sulem; Anna Helgadottir; Unnur Styrkarsdottir; Solveig Gretarsdottir; Steinunn Thorlacius; Ingileif Jonsdottir; Thorbjorg Jonsdottir; Elinborg J Olafsdottir; Gudridur Olafsdottir; Thorvaldur Jonsson; Frosti Jonsson; Knut Borch-Johnsen; Torben Hansen; Gitte Andersen; Torben Jørgensen; Torsten Lauritzen; Katja K. Aben; A.L.M. Verbeek; Nel Roeleveld; E. Kampman; Lisa R. Yanek; Lewis C. Becker; Laufey Tryggvadottir; Thorunn Rafnar; Diane M. Becker; Jeffrey R. Gulcher

Obesity results from the interaction of genetic and environmental factors. To search for sequence variants that affect variation in two common measures of obesity, weight and body mass index (BMI), both of which are highly heritable, we performed a genome-wide association (GWA) study with 305,846 SNPs typed in 25,344 Icelandic, 2,998 Dutch, 1,890 European Americans and 1,160 African American subjects and combined the results with previously published results from the Diabetes Genetics Initiative (DGI) on 3,024 Scandinavians. We selected 43 variants in 19 regions for follow-up in 5,586 Danish individuals and compared the results to a genome-wide study on obesity-related traits from the GIANT consortium. In total, 29 variants, some correlated, in 11 chromosomal regions reached a genome-wide significance threshold of P < 1.6 × 10−7. This includes previously identified variants close to or in the FTO, MC4R, BDNF and SH2B1 genes, in addition to variants at seven loci not previously connected with obesity.


Nature | 2012

Rate of de novo mutations and the importance of father/'s age to disease risk

Augustine Kong; Michael L. Frigge; Gisli Masson; Søren Besenbacher; Patrick Sulem; Gisli Magnusson; Sigurjon A. Gudjonsson; Asgeir Sigurdsson; Aslaug Jonasdottir; Adalbjorg Jonasdottir; Wendy S. W. Wong; Gunnar Sigurdsson; G. Bragi Walters; Stacy Steinberg; Hannes Helgason; Gudmar Thorleifsson; Daniel F. Gudbjartsson; Agnar Helgason; Olafur T. Magnusson; Unnur Thorsteinsdottir; Kari Stefansson

Mutations generate sequence diversity and provide a substrate for selection. The rate of de novo mutations is therefore of major importance to evolution. We conducted a study of genomewide mutation rate by sequencing the entire genomes of 78 Icelandic parent-offspring trios at high coverage. Here we show that in our samples, with an average father’s age of 29.7, the average de novo mutation rate is 1.20×10−8 per nucleotide per generation. Most strikingly, the diversity in mutation rate of single-nucleotide polymorphism (SNP) is dominated by the age of the father at conception of the child. The effect is an increase of about 2 mutations per year. After accounting for random Poisson variation, father’s age is estimated to explain nearly all of the remaining variation in the de novo mutation counts. These observations shed light on the importance of the father’s age on the risk of diseases such as schizophrenia and autism.


Nature | 2012

A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline

Thorlakur Jonsson; Jasvinder Atwal; Stacy Steinberg; Jon Snaedal; Palmi V. Jonsson; Sigurbjorn Bjornsson; Hreinn Stefansson; Patrick Sulem; Daniel F. Gudbjartsson; Janice Maloney; Kwame Hoyte; Amy Gustafson; Yichin Liu; Yanmei Lu; Tushar Bhangale; Robert R. Graham; Johanna Huttenlocher; Gyda Bjornsdottir; Ole A. Andreassen; Erik G. Jönsson; Aarno Palotie; Timothy W. Behrens; Olafur T. Magnusson; Augustine Kong; Unnur Thorsteinsdottir; Ryan J. Watts; Kari Stefansson

The prevalence of dementia in the Western world in people over the age of 60 has been estimated to be greater than 5%, about two-thirds of which are due to Alzheimer’s disease. The age-specific prevalence of Alzheimer’s disease nearly doubles every 5 years after age 65, leading to a prevalence of greater than 25% in those over the age of 90 (ref. 3). Here, to search for low-frequency variants in the amyloid-β precursor protein (APP) gene with a significant effect on the risk of Alzheimer’s disease, we studied coding variants in APP in a set of whole-genome sequence data from 1,795 Icelanders. We found a coding mutation (A673T) in the APP gene that protects against Alzheimer’s disease and cognitive decline in the elderly without Alzheimer’s disease. This substitution is adjacent to the aspartyl protease β-site in APP, and results in an approximately 40% reduction in the formation of amyloidogenic peptides in vitro. The strong protective effect of the A673T substitution against Alzheimer’s disease provides proof of principle for the hypothesis that reducing the β-cleavage of APP may protect against the disease. Furthermore, as the A673T allele also protects against cognitive decline in the elderly without Alzheimer’s disease, the two may be mediated through the same or similar mechanisms.


Nature Genetics | 2007

Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24

Julius Gudmundsson; Patrick Sulem; Andrei Manolescu; Laufey T Amundadottir; Daniel F. Gudbjartsson; Agnar Helgason; Thorunn Rafnar; Jon Thor Bergthorsson; Bjarni A. Agnarsson; Adam Baker; Asgeir Sigurdsson; Kristrun R. Benediktsdottir; Margret Jakobsdottir; Jianfeng Xu; Thorarinn Blondal; Jelena Kostic; Jielin Sun; Shyamali Ghosh; Simon N. Stacey; Magali Mouy; Jona Saemundsdottir; Valgerdur M. Backman; Kristleifur Kristjansson; Alejandro Tres; Alan W. Partin; Marjo T Albers-Akkers; Javier Godino-Ivan Marcos; Patrick C. Walsh; Dorine W. Swinkels; Sebastian Navarrete

Prostate cancer is the most prevalent noncutaneous cancer in males in developed regions, with African American men having among the highest worldwide incidence and mortality rates. Here we report a second genetic variant in the 8q24 region that, in conjunction with another variant we recently discovered, accounts for about 11%–13% of prostate cancer cases in individuals of European descent and 31% of cases in African Americans. We made the current discovery through a genome-wide association scan of 1,453 affected Icelandic individuals and 3,064 controls using the Illumina HumanHap300 BeadChip followed by four replication studies. A key step in the discovery was the construction of a 14-SNP haplotype that efficiently tags a relatively uncommon (2%–4%) susceptibility variant in individuals of European descent that happens to be very common (∼42%) in African Americans. The newly identified variant shows a stronger association with affected individuals who have an earlier age at diagnosis.

Collaboration


Dive into the Daniel F. Gudbjartsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge