Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel F. Stockli is active.

Publication


Featured researches published by Daniel F. Stockli.


Geology | 2001

Exhumation of the west-central Alborz Mountains, Iran, Caspian subsidence, and collision-related tectonics

Gary J. Axen; Patrick S. Lam; Marty Grove; Daniel F. Stockli; Jamshid Hassanzadeh

Crystallization and thermal histories of two plutons in the west-central Alborz (also Elburz, Elburs) Mountains, northern Iran, are combined with crosscutting relations and kinematic data from nearby faults to determine the Cenozoic tectonic evolution of this segment of the youthful Euro-Arabian collision zone. U/Pb, ^(40)Ar/^(39)Ar, and (U-Th)/He data were obtained from zircon, biotite, K-feldspar, and apatite. The Akapol pluton intruded at 56 ± 2 Ma, cooled to ∼150 °C by ca. 40 Ma, and stayed near that temperature until at least 25 Ma. The nearby Alam Kuh granite intruded at 6.8 ± 0.1 Ma and cooled rapidly to ∼70 °C by ca. 6 Ma. These results imply tectonic stability of the west-central Alborz from late Eocene to late Miocene time, consistent with Miocene sedimentation patterns in central Iran. Elevation-correlated (U- Th)/He ages from the Akapol suite indicate 0.7 km/m.y. exhumation between 6 and 4 Ma, and imply ∼10 km of Alborz uplift that was nearly synchronous with rapid south Caspian subsidence, suggesting a causal relation. Uplift, south Caspian subsidence and subsequent folding, reversal of Alborz strike-slip (from dextral to sinistral) and(?) eastward extrusion of central Iran, coarse Zagros molasse deposition, Dead Sea transform reorganization, Red Sea oceanic spreading, and(?) North and East Anatolian fault slip all apparently began ca. 5 ± 2 Ma, suggesting a widespread tectonic event that we infer was a response to buoyant Arabian lithosphere choking the Neo-Tethyan subduction zone.


Geology | 2000

Calibration of the apatite (U-Th)/He thermochronometer on an exhumed fault block, White Mountains, California

Daniel F. Stockli; Kenneth A. Farley; Trevor A. Dumitru

This study provides an empirical calibration of the apatite (U-Th)/He thermochronometer using the thermal structure derived from an extensive apatite fission-track study of an exhumed, normal-fault–bounded crustal block in the White Mountains in the western Basin and Range province. This fault block has been tilted ∼25° to the east during extension, exposing a continuous section of rocks previously buried to ∼7 km. Apatites yield (U-Th)/He apparent ages of ca. 50–55 Ma at shallow pre-extensional crustal levels that decrease systematically to ca. 12 Ma at >4.5 km paleodepth. The ages exhibit a well-defined exhumed apatite He partial retention zone over a pre-extensional temperature range of ∼40–80 °C and are completely reset above 80 °C, as calibrated from the apatite fission-track data. This pattern is in good agreement with He diffusion behavior predicted by laboratory experiments. The (U-Th)/He and fission-track methods yield concordant estimates for the timing of the onset of extensional faulting in the White Mountains ca. 12 Ma. Given the partially overlapping temperature-sensitivity windows, the (U-Th)/He and fission-track thermochronometers are highly complementary and may be used together to reconstruct thermal histories over the temperature window of ∼40–110 °C.


Tectonics | 2013

Accommodation of transpressional strain in the Arabia‐Eurasia collision zone: new constraints from (U‐Th)/He thermochronology in the Alborz mountains, north Iran

Paolo Ballato; Daniel F. Stockli; Mohammad R. Ghassemi; Angela Landgraf; Manfred R. Strecker; Jamshid Hassanzadeh; Anke M. Friedrich; Saeid H. Tabatabaei

The Alborz range of N Iran provides key information on the spatiotemporal evolution and characteristics of the Arabia-Eurasia continental collision zone. The southwestern Alborz range constitutes a transpressional duplex, which accommodates oblique shortening between Central Iran and the South Caspian Basin. The duplex comprises NW-striking frontal ramps that are kinematically linked to inherited E-W-striking, right-stepping lateral to obliquely oriented ramps. New zircon and apatite (U-Th)/He data provide a high-resolution framework to unravel the evolution of collisional tectonics in this region. Our data record two pulses of fast cooling associated with SW-directed thrusting across the frontal ramps at ~ 18–14 and 9.5-7.5 Ma, resulting in the tectonic repetition of a fossil zircon partial retention zone and a cooling pattern with a half U-shaped geometry. Uniform cooling ages of ~ 7–6 Ma along the southernmost E-W striking oblique ramp and across its associated NW-striking frontal ramps suggests that the ramp was reactivated as a master throughgoing, N-dipping thrust. We interpret this major change in fault kinematics and deformation style to be related to a change in the shortening direction from NE to N/NNE. The reduction in the obliquity of thrusting may indicate the termination of strike-slip faulting (and possibly thrusting) across the Iranian Plateau, which could have been triggered by an increase in elevation. Furthermore, we suggest that ~ 7-6-m.y.-old S-directed thrusting predated inception of the westward motion of the South Caspian Basin.


Earth and Planetary Science Letters | 2000

Helium chronometry of apatite and titanite using Nd-YAG laser heating

Martha A. House; Kenneth A. Farley; Daniel F. Stockli

We developed a technique for extracting ^4He from apatite and titanite using laser heating that permits measurement of U and Th and, hence, (U–Th)/He ages, on a single sample aliquot. Unlike direct laser heating, quantitative He extraction and U, Th retention can be achieved when samples are indirectly laser heated to temperatures below their melting point. Resulting He ages are consistent with those obtained from conventional furnace heating of larger samples. The major advantages of this technique include faster analysis and far lower, more reproducible He blanks that permit single crystal analyses. Single crystal dating opens a variety of new avenues for (U–Th)/He chronometry.


Nature Communications | 2015

Loess plateau storage of northeastern Tibetan plateau-derived Yellow River sediment

Junsheng Nie; Thomas Stevens; Martin Rittner; Daniel F. Stockli; Eduardo Garzanti; Mara Limonta; Anna Bird; Sergio Andò; Pieter Vermeesch; Joel E. Saylor; Huayu Lu; Daniel O. Breecker; Xiaofei Hu; Shanpin Liu; Alberto Resentini; Giovanni Vezzoli; Wenbin Peng; Andrew Carter; Shunchuan Ji; Baotian Pan

Marine accumulations of terrigenous sediment are widely assumed to accurately record climatic- and tectonic-controlled mountain denudation and play an important role in understanding late Cenozoic mountain uplift and global cooling. Underpinning this is the assumption that the majority of sediment eroded from hinterland orogenic belts is transported to and ultimately stored in marine basins with little lag between erosion and deposition. Here we use a detailed and multi-technique sedimentary provenance dataset from the Yellow River to show that substantial amounts of sediment eroded from Northeast Tibet and carried by the rivers upper reach are stored in the Chinese Loess Plateau and the western Mu Us desert. This finding revises our understanding of the origin of the Chinese Loess Plateau and provides a potential solution for mismatches between late Cenozoic terrestrial sedimentation and marine geochemistry records, as well as between global CO2 and erosion records.


American Journal of Science | 2008

From sea level to high elevation in 15 million years: Uplift history of the northern Tibetan Plateau margin in the Altun Shan

Bradley D. Ritts; Yongjun Yue; Stephan A. Graham; Edward R. Sobel; Oscar A. Abbink; Daniel F. Stockli

Approximately 1300 m of Oligocene-Miocene clastic strata are exposed along the Miran River in the southeastern Tarim basin, where the adjacent Altun Shan form the topographic escarpment of the northern Tibetan Plateau. The sedimentary section is faulted against Proterozoic rocks of the Altun Shan in the footwall of the south-dipping, oblique reverse Northern Altyn Tagh fault. Oligocene-Lower Miocene strata consist of fine-grained rocks that record low-gradient depositional systems. Mid-Miocene and younger rocks consist of coarse conglomerate, derived from the Altun Shan and deposited by high-gradient depositional systems. The change to coarse, high-gradient depositional systems with detrital source areas coincident with the modern Miran River drainage is interpreted to mark the onset of uplift of the Altun Shan on the Northern Altyn Tagh fault and its erosional exhumation. The age of the change from pre-orogenic to synorogenic sedimentation is constrained by a foraminifera assemblage at the base of the conglomeratic section that includes Early-Middle Miocene planktonic foraminifera. This interpretation is also supported by apatite fission track and (U-Th)/He ages and thermal models that indicate rapid Miocene cooling, and hence, rapid exhumation of the Altun Shan. In addition to defining the age of the synorogenic section, the foraminifera assemblage contains planktonic taxa, indicating a connection to open marine waters, and benthic assemblages typical of brackish to near-sea level paleobathymetry. Thus, micropaleontologic evidence demonstrates that the Miran River locality, now at ∼1400 m elevation, was at sea level approximately 15 million years ago. Thus, in addition to constraining the age of surface uplift and exhumation of the Altun Shan, the principal mountain range of the Tibetan Plateau in this region, as ∼15 to 16 Ma, the foraminifera assemblage indicates that the SE Tarim basin, off the northern edge of the plateau, had an average surface uplift rate of nearly 100 m/m.y. for the past 15 million years. These results suggest that shortening in the Altun Shan and uplift of the range significantly post-dated the initiation of large-scale strike-slip on the Altyn Tagh fault, and that regional surface uplift mechanisms operated in the Tarim basin, beyond the margins of the Tibetan Plateau.


Geological Society of America Bulletin | 2003

Cenozoic tectonic evolution of the White Mountains, California and Nevada

Daniel F. Stockli; Trevor A. Dumitru; Michael McWilliams; Kenneth A. Farley

The White Mountains represent the westernmost range of the central northern Basin and Range province. They are situated to the east of the unextended Sierra Nevada and represent a crustal block that is bounded along its western flank by the high-angle White Mountains fault zone. The fault zone accommodates up to ∼8 km of total dip-slip displacement. Investigation of the structural and thermal history of the White Mountains indicates a two-stage Cenozoic tectonic evolution. Preextensional Miocene volcanic rocks preserved along the eastern side of the range unconformably overlie Mesozoic granitic basement and currently dip up to 25° to the east, recording the total Cenozoic tilt of the crustal block. Apatite fission-track and (U-Th/He) thermochronological data indicate that the White Mountains underwent rapid exhumation and eastward tilting in the middle Miocene, starting at ca. 12 Ma. Geologic mapping (1:10,000), fault kinematic analysis, and dating of younger volcanic sequences show that following middle Miocene east-west extension, the White Mountains have been dominated by right-lateral transtensional deformation related to the Walker Lane belt. The eruption of late Miocene and Pliocene volcanic sequences in the eastern White Mountains postdates the majority of the uplift of the range, as evidenced by infilling of paleodrainages and the presence of east-directed flow fabrics. Fault kinematic indicators from the White Mountains fault zone are characterized by apparent overprinting of dip-slip fault-motion indicators by right-lateral slickenfibers and fault striations, demonstrating that the range-bounding fault system along the western side of the White Mountains was reactivated as a dextral strike-slip fault system. At the northern and southern ends of the range, Pliocene right-lateral transtension along this northwest–southeast-trending fault systems resulted in the formation of northeast-trending pull-apart basins that truncate the mountain range and transfer strike-slip displacement eastward from the Owens Valley fault zone to the Fish Lake Valley fault zone. The inception of strike-slip faulting in Fish Lake Valley occurred at ca. 6 Ma as constrained by late Miocene volcanic units. Right-lateral faulting on the western side of the White Mountains occurred at ca. 3 Ma and is distinctly younger than the faulting in the Fish Lake Valley area, indicating a westward migration of transcurrent deformation through time.


Lithosphere | 2012

Mantle-driven dynamic uplift of the Rocky Mountains and Colorado Plateau and its surface response: Toward a unified hypothesis

Karl E. Karlstrom; David Coblentz; Kenneth G. Dueker; W. Ouimet; Eric Kirby; J. W. van Wijk; Brandon Schmandt; Shari A. Kelley; Greg Lazear; Laura J. Crossey; Ryan S. Crow; Andres Aslan; Andy Darling; Richard C. Aster; J. K. MacCarthy; S. M. Hansen; Josh Stachnik; Daniel F. Stockli; R.V. Garcia; M. Hoffman; R. McKeon; J. Feldman; Matthew T. Heizler; Magdalena S. Donahue

The correspondence between seismic velocity anomalies in the crust and mantle and the differential incision of the continental-scale Colorado River system suggests that significant mantle-to-surface interactions can take place deep within continental interiors. The Colorado Rocky Mountain region exhibits low-seismic-velocity crust and mantle associated with atypically high (and rough) topography, steep normalized river segments, and areas of greatest differential river incision. Thermochronologic and geologic data show that regional exhumation accelerated starting ca. 6–10 Ma, especially in regions underlain by low-velocity mantle. Integration and synthesis of diverse geologic and geophysical data sets support the provocative hypothesis that Neogene mantle convection has driven long-wavelength surface deformation and tilting over the past 10 Ma. Attendant surface uplift on the order of 500–1000 m may account for ∼25%–50% of the current elevation of the region, with the rest achieved during Laramide and mid-Tertiary uplift episodes. This hypothesis highlights the importance of continued multidisciplinary tests of the nature and magnitude of surface responses to mantle dynamics in intraplate settings.


Geological Society of America Bulletin | 2006

Thermal histories from the central Alborz Mountains, northern Iran: Implications for the spatial and temporal distribution of deformation in northern Iran

Bernard Guest; Daniel F. Stockli; Marty Grove; Gary J. Axen; Patrick S. Lam; Jamshid Hassanzadeh

We integrate new and existing thermochronological, geochronological, and geologic data from the western and central Alborz Mountains of Iran to better constrain the late Cenozoic tectonic evolution of northern Iran in the context of the Arabia-Eurasia collision. New data are presented for two granitic plutons north of the Alborz Range crest. Additional new apatite (U-Th)-He data are also presented for volcanic, intrusive, and detrital apatite grains from two transects south of the range crest. Our most definitive results include zircon and apatite (U-Th)-He and limited K-feldspar ^(40)Ar/^(39)Ar thermal history data from the Cretaceous (ca. 98 Ma) Nusha pluton that reveal that the Alborz basement underwent generally slow denudation (∼0.1 km/m.y.) as late as 12 Ma with more accelerated exhumation (∼0.45 km/m.y.) that likely began shortly after 12 Ma. The Lahijan pluton, a late Neoproterozoic–Cambrian basement exposure near the Caspian shore, records apatite (U-Th)-He closure at 17–13 Ma. Additional (U-Th)-He results from detrital apatites sampled along two separate horizontal transects all consistently yielded latest Miocene to Pliocene apparent ages that imply that even supracrustal cover rocks within the Alborz have undergone significant, regionally extensive exhumation. Overall, our data are consistent with ∼5 km of regionally extensive denudation since ca. 12 Ma. The onset of rapid exhumation in the Alborz at ca. 12 Ma appears to be consistent with other timing estimates that place the onset of the Arabia-Eurasia collision between 14 and 10 Ma.


Geology | 2008

Development of active low-angle normal fault systems during orogenic collapse: Insight from Tibet

Paul Kapp; Michael D. Taylor; Daniel F. Stockli; Lin Ding

Active north-trending rifts in Tibet vary significantly in their character as a function of extension magnitude. Most rifts are characterized by internally drained basins bounded by high-angle normal faults with Paleogene or older rocks in the footwall. However, the central part of the Yadong-Gulu Rift (near Lhasa) and the newly documented Lunggar Rift in west-central Tibet are bounded by low-angle normal faults (detachments) with mylonitic rocks and Miocene granites in the footwall, and exhibit active basin incision and intrabasin topographic highs in areas of inferred maximum extension. We suggest that Tibetan rifts initiate as high-angle normal fault and half-graben or graben basin systems and evolve in response to increasing extension and footwall isostatic rebound into detachment systems that are active at uppermost crustal levels and above which rift basin fill is being uplifted and eroded.

Collaboration


Dive into the Daniel F. Stockli's collaboration.

Top Co-Authors

Avatar

Brian K. Horton

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauricio Parra

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Gary J. Axen

New Mexico Institute of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar

Kenneth A. Farley

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael G. Prior

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge