Daniel F. Tardiff
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel F. Tardiff.
Science | 2013
Chee Yeun Chung; Vikram Khurana; Pavan K. Auluck; Daniel F. Tardiff; Joseph R. Mazzulli; Frank Soldner; Valeriya Baru; Yali Lou; Yelena Freyzon; Sukhee Cho; Alison E. Mungenast; Julien Muffat; Maisam Mitalipova; Michael D. Pluth; Nathan T. Jui; Birgitt Schüle; Stephen J. Lippard; Li-Huei Tsai; Dimitri Krainc; Stephen L. Buchwald; Rudolf Jaenisch; Susan Lindquist
From Yeast to Therapeutic? Yeast has shown some promise as a model system to generate lead compounds that could have therapeutic potential for the cellular problems associated with neurodegenerative diseases. Along these lines, Tardiff et al. (p. 979, published online 24 October) and Chung et al. (p. 983, published online 24 October) describe the results of multiple screens in yeast that lead to the identification of a potential therapeutic compound to combat the cytotoxic affect of α-synuclein accumulation. The compound was able to reverse the pathological hallmarks of Parkinsons disease in cultured neurons derived from patients with α-synuclein–induced Parkinsons disease dementia. Screening in yeast yields an effective therapeutic for Parkinson’s patient–derived neuronal stem cells. The induced pluripotent stem (iPS) cell field holds promise for in vitro disease modeling. However, identifying innate cellular pathologies, particularly for age-related neurodegenerative diseases, has been challenging. Here, we exploited mutation correction of iPS cells and conserved proteotoxic mechanisms from yeast to humans to discover and reverse phenotypic responses to α-synuclein (αsyn), a key protein involved in Parkinson’s disease (PD). We generated cortical neurons from iPS cells of patients harboring αsyn mutations, who are at high risk of developing PD dementia. Genetic modifiers from unbiased screens in a yeast model of αsyn toxicity led to identification of early pathogenic phenotypes in patient neurons. These included nitrosative stress, accumulation of endoplasmic reticulum (ER)–associated degradation substrates, and ER stress. A small molecule identified in a yeast screen (NAB2), and the ubiquitin ligase Nedd4 it affects, reversed pathologic phenotypes in these neurons.
Science | 2013
Daniel F. Tardiff; Nathan T. Jui; Vikram Khurana; Mitali A. Tambe; Michelle L. Thompson; Chee Yeun Chung; Hari B. Kamadurai; Hyoung Tae Kim; Alex K. Lancaster; Kim A. Caldwell; Guy A. Caldwell; Jean-Christophe Rochet; Stephen L. Buchwald; Susan Lindquist
From Yeast to Therapeutic? Yeast has shown some promise as a model system to generate lead compounds that could have therapeutic potential for the cellular problems associated with neurodegenerative diseases. Along these lines, Tardiff et al. (p. 979, published online 24 October) and Chung et al. (p. 983, published online 24 October) describe the results of multiple screens in yeast that lead to the identification of a potential therapeutic compound to combat the cytotoxic affect of α-synuclein accumulation. The compound was able to reverse the pathological hallmarks of Parkinsons disease in cultured neurons derived from patients with α-synuclein–induced Parkinsons disease dementia. Screening in yeast yields an effective therapeutic for Parkinson’s patient–derived neuronal stem cells. α-Synuclein (α-syn) is a small lipid-binding protein implicated in several neurodegenerative diseases, including Parkinson’s disease, whose pathobiology is conserved from yeast to man. There are no therapies targeting these underlying cellular pathologies, or indeed those of any major neurodegenerative disease. Using unbiased phenotypic screens as an alternative to target-based approaches, we discovered an N-aryl benzimidazole (NAB) that strongly and selectively protected diverse cell types from α-syn toxicity. Three chemical genetic screens in wild-type yeast cells established that NAB promoted endosomal transport events dependent on the E3 ubiquitin ligase Rsp5/Nedd4. These same steps were perturbed by α-syn itself. Thus, NAB identifies a druggable node in the biology of α-syn that can correct multiple aspects of its underlying pathology, including dysfunctional endosomal and endoplasmic reticulum–to-Golgi vesicle trafficking.
Disease Models & Mechanisms | 2010
Linhui Julie Su; Pavan K. Auluck; Tiago F. Outeiro; Esti Yeger-Lotem; Joshua A. Kritzer; Daniel F. Tardiff; Katherine E. Strathearn; Fang Liu; Songsong Cao; Shusei Hamamichi; Kathryn J. Hill; Kim A. Caldwell; George W. Bell; Ernest Fraenkel; Antony A. Cooper; Guy A. Caldwell; J. Michael McCaffery; Jean-Christophe Rochet; Susan Lindquist
SUMMARY α-Synuclein (α-syn) is a small lipid-binding protein involved in vesicle trafficking whose function is poorly characterized. It is of great interest to human biology and medicine because α-syn dysfunction is associated with several neurodegenerative disorders, including Parkinson’s disease (PD). We previously created a yeast model of α-syn pathobiology, which established vesicle trafficking as a process that is particularly sensitive to α-syn expression. We also uncovered a core group of proteins with diverse activities related to α-syn toxicity that is conserved from yeast to mammalian neurons. Here, we report that a yeast strain expressing a somewhat higher level of α-syn also exhibits strong defects in mitochondrial function. Unlike our previous strain, genetic suppression of endoplasmic reticulum (ER)-to-Golgi trafficking alone does not suppress α-syn toxicity in this strain. In an effort to identify individual compounds that could simultaneously rescue these apparently disparate pathological effects of α-syn, we screened a library of 115,000 compounds. We identified a class of small molecules that reduced α-syn toxicity at micromolar concentrations in this higher toxicity strain. These compounds reduced the formation of α-syn foci, re-established ER-to-Golgi trafficking and ameliorated α-syn-mediated damage to mitochondria. They also corrected the toxicity of α-syn in nematode neurons and in primary rat neuronal midbrain cultures. Remarkably, the compounds also protected neurons against rotenone-induced toxicity, which has been used to model the mitochondrial defects associated with PD in humans. That single compounds are capable of rescuing the diverse toxicities of α-syn in yeast and neurons suggests that they are acting on deeply rooted biological processes that connect these toxicities and have been conserved for a billion years of eukaryotic evolution. Thus, it seems possible to develop novel therapeutic strategies to simultaneously target the multiple pathological features of PD.
PLOS Biology | 2011
Shulin Ju; Daniel F. Tardiff; Haesun Han; Kanneganti Divya; Quan Zhong; Lynne E. Maquat; Daryl A. Bosco; Lawrence J. Hayward; Robert H. Brown; Susan Lindquist; Dagmar Ringe; Gregory A. Petsko
FUS/TLS is a nucleic acid binding protein that, when mutated, can cause a subset of familial amyotrophic lateral sclerosis (fALS). Although FUS/TLS is normally located predominantly in the nucleus, the pathogenic mutant forms of FUS/TLS traffic to, and form inclusions in, the cytoplasm of affected spinal motor neurons or glia. Here we report a yeast model of human FUS/TLS expression that recapitulates multiple salient features of the pathology of the disease-causing mutant proteins, including nuclear to cytoplasmic translocation, inclusion formation, and cytotoxicity. Protein domain analysis indicates that the carboxyl-terminus of FUS/TLS, where most of the ALS-associated mutations are clustered, is required but not sufficient for the toxicity of the protein. A genome-wide genetic screen using a yeast over-expression library identified five yeast DNA/RNA binding proteins, encoded by the yeast genes ECM32, NAM8, SBP1, SKO1, and VHR1, that rescue the toxicity of human FUS/TLS without changing its expression level, cytoplasmic translocation, or inclusion formation. Furthermore, hUPF1, a human homologue of ECM32, also rescues the toxicity of FUS/TLS in this model, validating the yeast model and implicating a possible insufficiency in RNA processing or the RNA quality control machinery in the mechanism of FUS/TLS mediated toxicity. Examination of the effect of FUS/TLS expression on the decay of selected mRNAs in yeast indicates that the nonsense-mediated decay pathway is probably not the major determinant of either toxicity or suppression.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Kent E. S. Matlack; Daniel F. Tardiff; Priyanka Narayan; Shusei Hamamichi; Kim A. Caldwell; Guy A. Caldwell; Susan Lindquist
Significance Identifying disease-modifying therapies for Alzheimer’s disease (AD) has been an insurmountable challenge. To provide a new discovery tool for high-throughput compound screening, we used a simple yeast model that makes toxic amounts of β-amyloid (Aβ), a peptide central to AD pathology. Previous genetic analysis established that Aβ compromises yeast biology in a manner relevant to human AD. We screened 140,000 compounds for reversal of toxicity and identified a class of protective metal-binding compounds related to clioquinol (CQ), a compound that alleviates Aβ toxicity in mouse AD models. Treating yeast with CQ promoted rapid degradation of Aβ oligomers, rescuing cellular processes perturbed by this insidious peptide and restoring viability. Our approach provides a method for identifying compounds that may eventually help treat AD. Alzheimer’s disease (AD) is a common, progressive neurodegenerative disorder without effective disease-modifying therapies. The accumulation of amyloid-β peptide (Aβ) is associated with AD. However, identifying new compounds that antagonize the underlying cellular pathologies caused by Aβ has been hindered by a lack of cellular models amenable to high-throughput chemical screening. To address this gap, we use a robust and scalable yeast model of Aβ toxicity where the Aβ peptide transits through the secretory and endocytic compartments as it does in neurons. The pathogenic Aβ 1–42 peptide forms more oligomers and is more toxic than Aβ 1–40 and genome-wide genetic screens identified genes that are known risk factors for AD. Here, we report an unbiased screen of ∼140,000 compounds for rescue of Aβ toxicity. Of ∼30 hits, several were 8-hydroxyquinolines (8-OHQs). Clioquinol (CQ), an 8-OHQ previously reported to reduce Aβ burden, restore metal homeostasis, and improve cognition in mouse AD models, was also effective and rescued the toxicity of Aβ secreted from glutamatergic neurons in Caenorhabditis elegans. In yeast, CQ dramatically reduced Aβ peptide levels in a copper-dependent manner by increasing degradation, ultimately restoring endocytic function. This mirrored its effects on copper-dependent oligomer formation in vitro, which was also reversed by CQ. This unbiased screen indicates that copper-dependent Aβ oligomer formation contributes to Aβ toxicity within the secretory/endosomal pathways where it can be targeted with selective metal binding compounds. Establishing the ability of the Aβ yeast model to identify disease-relevant compounds supports its further exploitation as a validated early discovery platform.
Journal of Biological Chemistry | 2012
Daniel F. Tardiff; Michelle L. Tucci; Kim A. Caldwell; Guy A. Caldwell; Susan Lindquist
Background: Expressing TDP-43 in yeast mimics several aspects of human TDP-43-based neurodegenerative diseases. Results: A screen for compounds that rescued TDP-43 toxicity identified functionally distinct 8-hydroxyquinoline metal chelators. Conclusion: Different 8-OHQs exhibit distinct modes of action and implicate multiple metal-dependent protective mechanisms against TDP-43, α-synuclein, and polyglutamine toxicity. Significance: 8-Hydroxyquinolines may ultimately be tailored to modify diverse neurodegenerative diseases in man. No current therapies target the underlying cellular pathologies of age-related neurodegenerative diseases. Model organisms provide a platform for discovering compounds that protect against the toxic, misfolded proteins that initiate these diseases. One such protein, TDP-43, is implicated in multiple neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. In yeast, TDP-43 expression is toxic, and genetic modifiers first discovered in yeast have proven to modulate TDP-43 toxicity in both neurons and humans. Here, we describe a phenotypic screen for small molecules that reverse TDP-43 toxicity in yeast. One group of hit compounds was 8-hydroxyquinolines (8-OHQ), a class of clinically relevant bioactive metal chelators related to clioquinol. Surprisingly, in otherwise wild-type yeast cells, different 8-OHQs had selectivity for rescuing the distinct toxicities caused by the expression of TDP-43, α-synuclein, or polyglutamine proteins. In fact, each 8-OHQ synergized with the other, clearly establishing that they function in different ways. Comparative growth and molecular analyses also revealed that 8-OHQs have distinct metal chelation and ionophore activities. The diverse bioactivity of 8-OHQs indicates that altering different aspects of metal homeostasis and/or metalloprotein activity elicits distinct protective mechanisms against several neurotoxic proteins. Indeed, phase II clinical trials of an 8-OHQ has produced encouraging results in modifying Alzheimer disease. Our unbiased identification of 8-OHQs in a yeast TDP-43 toxicity model suggests that tailoring 8-OHQ activity to a particular neurodegenerative disease may be a viable therapeutic strategy.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Daniel F. Tardiff; Katharine C. Abruzzi; Michael Rosbash
To characterize proteins associated with active transcription complexes, we purified RNA polymerase II (pol II) from Saccharomyces cerevisiae after fixing live cells with formaldehyde. The approach mimics ChIP and requires solubilizing cross-linked complexes with sonication. Pol II was affinity-purified, and associated proteins were identified by MS. Several classes of proteins depended on cross-linking, including Mediator, general transcription factors, elongation factors, ribonucleoprotein particle (RNP) proteins, and histones. A tagged RNP protein reciprocally purified pol II under identical cross-linking conditions, and the association between RNP proteins and pol II was largely RNase-sensitive. The data indicate that the cross-linked Pol II purification contains elongating pol II with associated nascent RNP. Consistent with this view, some elongation factors no longer associate with pol II after inactivation of transcription in the temperature-sensitive pol II mutant, rpb1-1. Taken together, our data suggest that the cross-linked pol II purification contains a mixed population of pol II, including initiating pol II and elongating pol II.
Nature Reviews Neurology | 2015
Vikram Khurana; Daniel F. Tardiff; Chee Yeun Chung; Susan Lindquist
In the absence of a single preventive or disease-modifying strategy, neurodegenerative diseases are becoming increasingly prevalent in our ageing population. The mechanisms underlying neurodegeneration are poorly understood, making the target-based drug screening strategies that are employed by the pharmaceutical industry fraught with difficulty. However, phenotypic screening in neurons and glia derived from patients is now conceivable through unprecedented developments in reprogramming, transdifferentiation, and genome editing. We outline progress in this nascent field, but also consider the formidable hurdles to identifying robust, disease-relevant and screenable cellular phenotypes in patient-derived cells. We illustrate how analysis in the simple bakers yeast cell Saccharaomyces cerevisiae is driving discovery in patient-derived neurons, and how approaches in this model organism can establish a paradigm to guide the development of stem cell-based phenotypic screens.
Drug Discovery Today: Technologies | 2013
Daniel F. Tardiff; Susan Lindquist
Parkinsons disease (PD) is a devastating neurodegenerative disease that affects over one million patients in the US. Yet, no disease modifying drugs exist, only those that temporarily alleviate symptoms. Because of its poorly defined and highly complex disease etiology, it is essential to embrace unbiased and innovative approaches for identifying new chemical entities that target the underlying toxicities associated with PD. Traditional target-based drug discovery paradigm can suffer from a bias toward a small number of potential targets. Phenotypic screening of both genetic and pharmacological PD models offers an alternative approach to discover compounds that target the initiating causes and effectors of cellular toxicity. The relative paucity of reported phenotypic screens illustrates the intrinsic difficulty in establishing model systems that are both biologically meaningful and adaptable to high-throughput screening. Parallel advances in PD models and in vivo screening technologies will help create opportunities for identifying new therapeutic leads with unanticipated, breakthrough mechanisms of action.
Movement Disorders | 2014
Daniel F. Tardiff; Vikram Khurana; Chee Yeun Chung; Susan Lindquist
No disease‐modifying therapies are available for synucleinopathies, including Parkinsons disease (PD), dementia with Lewy bodies (DLB), and multiple systems atrophy (MSA). The lack of therapies has been impeded by a paucity of validated drug targets and problematic cell‐based model systems. New approaches are therefore needed to identify genes and compounds that directly target the underlying cellular pathologies elicited by the pathological protein, α−synuclein (α−syn). This small, lipid‐binding protein impinges on evolutionarily conserved processes such as vesicle trafficking and mitochondrial function. For decades, the genetically tractable, single‐cell eukaryote, budding yeast, has been used to study nearly all aspects of cell biology. More recently, yeast has revealed key insights into the underlying cellular pathologies caused by α−syn. The robust cellular toxicity caused by α−syn expression facilitates unbiased high‐throughput small‐molecule screening. Critically, one must validate the discoveries made in yeast in disease‐relevant neuronal models. Here, we describe two recent reports that together establish yeast‐to‐human discovery platforms for synucleinopathies. In this exemplar, genes and small molecules identified in yeast were validated in patient‐derived neurons that present the same cellular phenotypes initially discovered in yeast. On validation, we returned to yeast, where unparalleled genetic approaches facilitated the elucidation of a small molecules mode of action. This approach enabled the identification and neuronal validation of a previously unknown “druggable” node that interfaces with the underlying, precipitating pathologies caused by α−syn. Such platforms can provide sorely needed leads and fresh ideas for disease‐modifying therapy for these devastating diseases.