Daniel Fried
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Fried.
Journal of Biomedical Optics | 2002
Daniel Fried; John Xie; Sahar Shafi; John D. B. Featherstone; Thomas M. Breunig; Charles Q. Le
New diagnostic tools are needed for the characterization of dental caries in the early stages of development. If carious lesions are detected early enough, they can be arrested without the need for surgical intervention. The objective of this study was to demonstrate that polarization sensitive optical coherence tomography (PS-OCT) can be used for the imaging of early caries lesions and for the monitoring of lesion progression over time. High-resolution polarization resolved images were acquired of natural caries lesions and simulated caries lesions of varying severity created over time periods of 1 to 14 days. Linearly polarized light was incident on the tooth samples and the reflected intensity in both orthogonal polarizations was measured. PS-OCT was invaluable for removing the confounding influence of surface reflections and native birefringence necessary for the enhanced resolution of the surface structure of caries lesions. This study demonstrated that PS-OCT is well suited for the imaging of interproximal and occlusal caries, early root caries, and for imaging decay under composite fillings. Longitudinal measurements of the reflected light intensity in the orthogonal polarization state from the area of simulated caries lesions linearly correlated with the square root of time of demineralization indicating that PS-OCT is well suited for monitoring changes in enamel mineralization over time.
Applied Optics | 1995
Daniel Fried; Richard E. Glena; John D. B. Featherstone; W. Seka
The light-scattering properties of dental enamel and dentin were measured at 543, 632, and 1053 nm. Angularly resolved scattering distributions for these materials were measured from 0° to 180° using a rotating goniometer. Surface scattering was minimized by immersing the samples in an index-matching bath. The scattering and absorption coefficients and the scattering phase function were deduced by comparing the measured scattering data with angularly resolved Monte Carlo light-scattering simulations. Enamel and dentin were best represented by a linear combination of a highly forward-peaked Henyey-Greenstein (HG) phase function and an isotropic phase function. Enamel weakly scatters light between 543 nm and 1.06 µm, with the scattering coefficient (µ(s)) ranging from µ(s) = 15 to 105 cm(-1). The phase function is a combination of a HG function with g = 0.96 and a 30-60% isotropic phase function. For enamel, absorption is negligible. Dentin scatters strongly in the visible and near IR (µ(s)≅260 cm(-1)) and absorbs weakly (µ(a) ≅ 4 cm(-1)). The scattering phase function for dentin is described by a HG function with g = 0.93 and a very weak isotropic scattering component (˜ 2%).
Journal of Dental Research | 1998
John D. B. Featherstone; N.A. Barrett-Vespone; Daniel Fried; Z. Kantorowitz; W. Seka
Several studies during the last 30 years have demonstrated the potential of laser pre-treatment of enamel or tooth roots to inhibit subsequent acid-induced dissolution or artificial caries-like challenge in the laboratory. The overall objective of ongoing studies in our laboratories is to determine, systematically, the optimum sets of parameters for carbon dioxide laser irradiation that will potentially effectively inhibit dental caries in enamel and tooth roots. The aim of the present study was to examine the roles of wavelength and fluence in the prevention of caries progression in vitro in enamel by means of a pH-cycling model. The hypothesis to be tested was that the highly absorbed 9.3- and 9.6-μm wavelengths would be efficiently converted to heat, creating a temperature sufficiently high to reduce the acid-reactivity of the mineral and inhibit caries-like lesion progression in dental enamel. One hundred and sixty caries-free tooth crowns were cleaned and varnished with acid-resistant varnish, leaving one exposed window of enamel. Twelve groups of 10 enamel samples were irradiated in their individual windows by one of the four wavelengths (9.3, 9.6, 10.3, or 10.6 μm) of a tunable CO2 laser. Energy per pulse was 25, 50, 100, 200, or 250 mj (25 pulses). Repetition rate was 10 Hz, and beam diameter was 1.6 mm. Fluence conditions of 1 to 12.5J/cm 2 per pulse were produced. All teeth, including 40 non-irradiated controls, were subjected to pH-cycling to produce artificial caries-like lesions. Results were assessed by cross-sectional microhardness testing. Inhibition of caries progression of from 40% to 85% was achieved over the range of laser conditions tested. At 9.3 and 9.6 μm, 25 pulses at absorbed fluences of 1 to 3 J/cm2 produced inhibition on the order of 70% with minimal subsurface temperature elevation (< 1°C at 2 mm depth), comparable with inhibition produced in this model with daily fluoride dentifrice treatments. Safety and efficacy studies will be required in animals and humans before these promising laboratory results can be applied in clinical practice.
Journal of Biomedical Optics | 2006
Cynthia L. Darling; Gigi D. Huynh; Daniel Fried
A fundamental understanding of how near-IR light propagates through sound and carious dental hard tissues is essential for the development of clinically useful optical diagnostic systems, since image contrast is based on changes in the optical properties of these tissues on demineralization. During the caries (decay) process, micropores are formed in the lesion due to partial dissolution of the individual mineral crystals. Such small pores behave as scattering centers, strongly scattering visible and near-IR light. The optical properties of enamel can be quantitatively described by the absorption and scattering coefficients, and the scattering phase function. Our aim is to measure the optical scattering behavior of natural and artificial enamel caries. Near-IR attenuation measurements and angular-resolved goniometer measurements coupled with Monte Carlo simulations are used to determine changes in the scattering coefficient and the scattering anisotropy on demineralization at 1310 nm. An ultra-high resolution digital microradiography system is used to quantify the lesion severity by measurement of the relative mineral loss for comparison with optical scattering measurements. The scattering coefficient increases exponentially with increasing mineral loss. Natural and artificial demineralization increases the scattering coefficient more than two orders of magnitude at 1310 nm, and the scattering is highly forward directed.
Optics Express | 2003
Robert S. Jones; Gigi D. Huynh; Graham C. Jones; Daniel Fried
New imaging technologies are needed for the early detection of dental caries (decay) in the interproximal contact sites between teeth. Previous measurements have demonstrated that dental enamel is highly transparent in the near-IR at 1300-nm. In this study, a near-IR imaging system operating at 1300-nm was used to acquire images through tooth sections of varying thickness and whole teeth in order to demonstrate the utility of a near-IR dental transillumination system for the imaging of early dental caries (decay). Simulated lesions, which model the optical scattering of natural dental caries, were placed in plano-parallel dental enamel sections. The contrast ratio between the simulated lesions and surrounding sound enamel was calculated from analysis of acquired projection images. The results show significant contrast between the lesion and the enamel (>0.35) and a spatial line profile that clearly resolves the lesion in samples as thick as 6.75-mm. This study clearly demonstrates that a near-IR transillumination system has considerable potential for the imaging of early dental decay.
Journal of Dental Research | 1995
Sandra M. McCormack; Daniel Fried; John D. B. Featherstone; Richard E. Glena; W. Seka
Studies of the effects of carbon dioxide (CO2) lasers on dental enamel have demonstrated that surface changes can be produced at low fluences (< 10 J/cm2) if wavelengths are used which are efficiently absorbed by the hard tissues. In this study, scanning electron microscopy (SEM) was used to characterize the wavelength dependence of surface changes in dental enamel after exposure to an extensive range of CO2 laser conditions. Bovine and human enamel were irradiated by a tunable, pulsed CO2 laser (9.3, 9.6, 10.3, 10.6 μm), with 5, 25, or 100 pulses, at absorbed fluences of 2, 5, 10, or 20 J/cm2, and pulse widths of 50, 100, 200, 500 us. SEM micrographs revealed evidence of melting, crystal fusion, and exfoliation in a wavelength-dependent manner. Crystal fusion occurred at absorbed fluences as low as 5 J/cm2 per pulse at 9.3, 9.6, and 10.3 μm, in contrast to no crystal fusion at 10.6 pm (≤ 20 J/cm2). Longer pulses at constant fluence conditions decreased the extent of surface melting and crystal fusion. The total number of laser pulses delivered to the tissue did not significantly affect surface changes as long as a minimum of 5 to 10 pulses was used. Within the four easily accessible wavelengths of the CO2 laser, there are dramatic differences in the observed surface changes of dental hard tissue.
Optics Express | 2005
Christopher M. Bühler; Patara Ngaotheppitak; Daniel Fried
Dental enamel manifests high transparency in the near-IR. Previous work demonstrated that near-IR light at 1310-nm is ideally suited for the transillumination of interproximal dental caries (dental decay in between teeth) [1]. However, most new dental decay occurs in the pits and fissures of the occlusal (biting) surfaces of posterior teeth. These caries lesions cannot be detected by x-rays during the early stages of decay due to the overlapping topography of the crown of the tooth. In this study, a near- IR imaging system operating at 1310-nm was used to acquire occlusal images by launching the near-IR light into the buccal surface of the tooth just above the gingival margin (gum-line). The near-IR light diffuses through the highly scattering dentin providing uniform back illumination of the enamel of the crowns allowing imaging of the occlusal surfaces. The near-IR images show high contrast between sound and demineralized areas. Demineralization (decay) can be easily differentiated from stains, pigmentation, and hypomineralization (fluorosis). Moreover, the high transparency of the enamel enables imaging at greater depth for the detection of subsurface decay hidden under the enamel. These early images suggest that the near-IR offers significant advantages over conventional visual, tactile and radiographic caries detection methods.
Lasers in Dentistry II | 1996
Daniel Fried; John D. B. Featherstone; Steven R. Visuri; W. Seka; Joseph T. Walsh
Dental hard tissues can be ablated efficiency by (lambda) equals 3 micrometers laser irradiation with minimal subsurface thermal damage. However, the potential of lasers operating in the region of the infrared for caries preventive treatments has not been investigated. In this study, the caries inhibition potential of Er:YAG ((lambda) equals 2.94 micrometers ) and Er:YSGG ((lambda) equals 2.79 micrometers ) laser radiation on dental enamel was evaluated at various irradiation intensities. Pulsed IR radiometry and scanning electron microscopy (SEM) were used to measure the time-resolved surface temperatures during laser irradiation and to detect changes in the surface morphology. The magnitude and temporal evolution of the surface temperature during multiple pulse irradiation of the tissue was dependent on the wavelength, irradiation intensity, and the number of laser pulses. Radiometry and SEM micrographs indicated that ablation was initiated at temperatures of approximately 300 degree(s)C for Er:YAG and 800 degree(s)C for Er:YSGG laser irradiation, well below the melting and vaporization temperatures of the carbonated hydroxyapatite mineral component (m.p. equals 1200 degree(s)C). Nevertheless, there was marked caries inhibition for irradiation intensities below those temperature thresholds, notably 60% and 40% inhibition was achieved after Er:YSGG and Er:YAG laser irradiation, respectively. These results indicate that the Er:YSGG laser can be used effectively for both preventive dental treatments and for hard tissue removal.
Lasers in Surgery and Medicine | 1999
Michael J. Zuerlein; Daniel Fried; John D. B. Featherstone
Many studies of laser‐induced thermal decomposition of dental enamel have demonstrated a reduction in the rate of acid dissolution, size of artificial caries‐like lesions, and acid reactivity. Additionally, studies have correlated the loss of carbonate from dental enamel with a reduction in acid dissolution. Dental mineral consists of hydroxyapatite with many substitutions, the major one being carbonate (∼ 3–5% by weight), which markedly affects acid reactivity. The principle objective of the present work was to determine the precise depth of modification, i.e., thermally induced decomposition of dental enamel (carbonate loss), at the predicted optimum laser irradiation parameters.
Medical Laser Application | 2001
John D. B. Featherstone; Daniel Fried
Summary In order to choose the laser conditions that will be best suited for a particular application in dentistry, knowledge of the fundamental interactions of lasers with the tissues is necessary. Lasers interactions with tissue are complicated and no single parameter alone will determine how the laser affects the tissue. Dental hard tissue applications include ablation of carious lesions, cavity preparation for restoration, caries detection, endodontic surgery, and the potential for caries preventive therapy. The parameters of prime concern in understanding desirable or undesirable tissue effects are wavelength, pulse duration, absorption properties, scattering, energy, fluence (energy/surface area), power density, repetition rate, number of pulses, pulse duration and pulse shape. A range of laser parameters has been found with which dental enamel can be treated to make it resistant to subsequent dissolution by acid during dental caries. Our studies have demonstrated that treatment of enamel by specific pulsed carbon dioxide laser irradiation can markedly inhibit subsequent caries progression. During irradiation, heat causes carbonate loss from the carbonated hydroxyapatite mineral, converting it into a low solubility hydroxyapatite-like calcium phosphate. By carefully choosing the parameters it is possible to produce a laser that can selectively remove carious tissue, leading to a conservative cavity preparation, and also providing protection against later caries challenges.