Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel G. Healy is active.

Publication


Featured researches published by Daniel G. Healy.


Lancet Neurology | 2006

Non-motor symptoms of Parkinson's disease: diagnosis and management.

K. Ray Chaudhuri; Daniel G. Healy; A. H. V. Schapira

The clinical diagnosis of Parkinsons disease rests on the identification of the characteristics related to dopamine deficiency that are a consequence of degeneration of the substantia nigra pars compacta. However, non-dopaminergic and non-motor symptoms are sometimes present before diagnosis and almost inevitably emerge with disease progression. Indeed, non-motor symptoms dominate the clinical picture of advanced Parkinsons disease and contribute to severe disability, impaired quality of life, and shortened life expectancy. By contrast with the dopaminergic symptoms of the disease, for which treatment is available, non-motor symptoms are often poorly recognised and inadequately treated. However, attention is now being focused on the recognition and quantitation of non-motor symptoms, which will form the basis of improved treatments. Some non-motor symptoms, including depression, constipation, pain, genitourinary problems, and sleep disorders, can be improved with available treatments. Other non-motor symptoms can be more refractory and need the introduction of novel non-dopaminergic drugs. Inevitably, the development of treatments that can slow or prevent the progression of Parkinsons disease and its multicentric neurodegeneration provides the best hope of curing non-motor symptoms.


Lancet Neurology | 2008

Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study

Daniel G. Healy; Mario Falchi; Sean S. O'Sullivan; Vincenzo Bonifati; Alexandra Durr; Susan Bressman; Alexis Brice; Jan O. Aasly; Cyrus P. Zabetian; Stefano Goldwurm; Joaquim J. Ferreira; Eduardo Tolosa; Denise M. Kay; Christine Klein; David R. Williams; Connie Marras; Anthony E. Lang; Zbigniew K. Wszolek; José Berciano; A. H. V. Schapira; Timothy Lynch; Kailash P. Bhatia; Thomas Gasser; Andrew J. Lees; Nicholas W. Wood

Summary Background Mutations in LRRK2, the gene that encodes leucine-rich repeat kinase 2, are a cause of Parkinsons disease (PD). The International LRRK2 Consortium was established to answer three key clinical questions: can LRRK2-associated PD be distinguished from idiopathic PD; which mutations in LRRK2 are pathogenic; and what is the age-specific cumulative risk of PD for individuals who inherit or are at risk of inheriting a deleterious mutation in LRRK2? Methods Researchers from 21 centres across the world collaborated on this study. The frequency of the common LRRK2 Gly2019Ser mutation was estimated on the basis of data from 24 populations worldwide, and the penetrance of the mutation was defined in 1045 people with mutations in LRRK2 from 133 families. The LRRK2 phenotype was defined on the basis of 59 motor and non-motor symptoms in 356 patients with LRRK2-associated PD and compared with the symptoms of 543 patients with pathologically proven idiopathic PD. Findings Six mutations met the consortiums criteria for being proven pathogenic. The frequency of the common LRRK2 Gly2019Ser mutation was 1% of patients with sporadic PD and 4% of patients with hereditary PD; the frequency was highest in the middle east and higher in southern Europe than in northern Europe. The risk of PD for a person who inherits the LRRK2 Gly2019Ser mutation was 28% at age 59 years, 51% at 69 years, and 74% at 79 years. The motor symptoms (eg, disease severity, rate of progression, occurrence of falls, and dyskinesia) and non-motor symptoms (eg, cognition and olfaction) of LRRK2-associated PD were more benign than those of idiopathic PD. Interpretation Mutations in LRRK2 are a clinically relevant cause of PD that merit testing in patients with hereditary PD and in subgroups of patients with PD. However, this knowledge should be applied with caution in the diagnosis and counselling of patients. Funding UK Medical Research Council; UK Parkinsons Disease Society; UK Brain Research Trust; Internationaal Parkinson Fonds; Volkswagen Foundation; National Institutes of Health: National Institute of Neurological Disorders and Stroke and National Institute of Aging; Udall Parkinsons Disease Centre of Excellence; Pacific Alzheimer Research Foundation Centre; Italian Telethon Foundation; Fondazione Grigioni per il Morbo di Parkinson; Michael J Fox Foundation for Parkinsons Research; Safra Global Genetics Consortium; US Department of Veterans Affairs; French Agence Nationale de la Recherche.


The Lancet | 2005

A common LRRK2 mutation in idiopathic Parkinson's disease

William P. Gilks; Patrick M. Abou-Sleiman; Sonia Gandhi; Shushant Jain; Andrew Singleton; Andrew J. Lees; Karen Shaw; Kailash P. Bhatia; Vincenzo Bonifati; Niall Quinn; John B. Lynch; Daniel G. Healy; Janice L. Holton; Tamas Revesz; Nicholas W. Wood

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been shown to cause autosomal dominant Parkinsons disease. Few mutations in this gene have been identified. We investigated the frequency of a common heterozygous mutation, 2877510 g-->A, which produces a glycine to serine aminoacid substitution at codon 2019 (Gly2019 ser), in idiopathic Parkinsons disease. We assessed 482 patients with the disorder, of whom 263 had pathologically confirmed disease, by direct sequencing for mutations in exon 41 of LRRK2. The mutation was present in eight (1.6%) patients. We have shown that a common single Mendelian mutation is implicated in sporadic Parkinsons disease. We suggest that testing for this mutation will be important in the management and genetic counselling of patients with Parkinsons disease.


Annals of Neurology | 2003

The role of pathogenic DJ‐1 mutations in Parkinson's disease

Patrick M. Abou-Sleiman; Daniel G. Healy; Niall Quinn; Andrew J. Lees; Nicholas W. Wood

Mutations in DJ‐1 (PARK7) have been reported in two consanguineous families with young‐onset Parkinsons disease (YOPD). This study aims to confirm the presence of pathogenic DJ‐1 mutations and determine their contribution in young‐onset and more typical later onset Parkinsons disease (PD). The entire open reading frame of the DJ‐1 gene was screened by direct sequencing in 185 unrelated YOPD patients and a separate cohort of 190 pathologically proven cases of PD. Ethnically matched controls were screened for all mutations identified. We report a low frequency of pathogenic DJ‐1 mutations in our cohort of patients. One homozygous missense mutation and one heterozygous mutation were found in two YOPD samples. In addition, several variants were found in the coding sequence of the gene, which are likely to represent polymorphisms. In one case, the polymorphism was population specific. The reported 14Kbp deletion was not found in any of our samples or controls. We confirm the presence of pathogenic DJ‐1 mutations in YOPD and estimate their frequency at approximately 1%. No mutations were found in our cohort of later onset sporadic pathologically confirmed cases, suggesting that DJ‐1 mutations may only rarely contribute to the cause of this more typical sporadic form of the disease.


Annals of Neurology | 2006

A heterozygous effect for PINK1 mutations in Parkinson's disease?

Patrick M. Abou-Sleiman; Miratul M. K. Muqit; Neil Q. McDonald; Yan Xiang Yang; Sonia Gandhi; Daniel G. Healy; Kirsten Harvey; Robert J. Harvey; Emma Deas; Kailash P. Bhatia; Niall Quinn; Andrew J. Lees; David S. Latchman; Nicholas W. Wood

To investigate the significance of PINK1 mutations in sporadic Parkinsons disease (PD).


Journal of Neurochemistry | 2006

Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress

Miratul M. K. Muqit; Patrick M. Abou-Sleiman; Adrian T. Saurin; Kirsten Harvey; S Gandhi; Emma Deas; Simon Eaton; Martin Smith; Kerrie Venner; Antoni Matilla; Daniel G. Healy; William P. Gilks; Andrew J. Lees; Janice L. Holton; Tamas Revesz; Peter J. Parker; Robert J. Harvey; Nicholas W. Wood; David S. Latchman

Following our identification of PTEN‐induced putative kinase 1 (PINK1) gene mutations in PARK6‐linked Parkinsons disease (PD), we have recently reported that PINK1 protein localizes to Lewy bodies (LBs) in PD brains. We have used a cellular model system of LBs, namely induction of aggresomes, to determine how a mitochondrial protein, such as PINK1, can localize to aggregates. Using specific polyclonal antibodies, we firstly demonstrated that human PINK1 was cleaved and localized to mitochondria. We demonstrated that, on proteasome inhibition with MG‐132, PINK1 and other mitochondrial proteins localized to aggresomes. Ultrastructural studies revealed that the mechanism was linked to the recruitment of intact mitochondria to the aggresome. Fractionation studies of lysates showed that PINK1 cleavage was enhanced by proteasomal stress in vitro and correlated with increased expression of the processed PINK1 protein in PD brain. These observations provide valuable insights into the mechanisms of LB formation in PD that should lead to a better understanding of PD pathogenesis.


Journal of Neurology, Neurosurgery, and Psychiatry | 2004

Tau gene and Parkinson’s disease: a case–control study and meta-analysis

Daniel G. Healy; Patrick M. Abou-Sleiman; Andrew J. Lees; Juan P. Casas; N Quinn; Kailash P. Bhatia; Aroon D. Hingorani; Nicholas W. Wood

Objective: To investigate whether the tau H1 haplotype is a genetic risk factor in Parkinson’s disease and to report a meta-analysis on all previously published data Methods and results: In a sample of 580 patients with Parkinson’s disease and 513 controls there was an increased risk of Parkinson’s disease for both the tau H1 haplotype (p⩽0.0064; odds ratio (OR) 1.34 (95% confidence interval (CI), 1.04 to 1.72)) and the H1H1 genotype (p⩽0.0047; OR 1.42 (1.1 to 1.83)). Under a fixed effect model, the summary OR for this showed that individuals homozygous for the H1 allele were 1.57 times more likely to develop Parkinson’s disease than individuals carrying the H2 allele (95% CI 1.33 to 1.85; p<0.00001). The population attributable risk for the tau variant, for the main comparison of H1H1 against H2 carriers, was 24.8% for all studies combined. Conclusions: Homozygosity for the tau H1 is associated with an increased risk of Parkinson’s disease. This adds to the growing body of evidence that common genetic variation contributes to the pathogenesis of this disorder.


PLOS ONE | 2012

Creation of an Open-Access, Mutation-Defined Fibroblast Resource for Neurological Disease Research

Selina Wray; Matthew Self; Patrick A. Lewis; Jan-Willem Taanman; Natalie S. Ryan; Colin J. Mahoney; Yuying Liang; Michael J. Devine; Una-Marie Sheerin; Henry Houlden; Huw R. Morris; Daniel G. Healy; Jose-Felix Marti-Masso; Elisavet Preza; Suzanne Barker; Margaret Sutherland; Roderick A. Corriveau; Michael R D'Andrea; A. H. V. Schapira; Ryan J. Uitti; Mark Guttman; Grzegorz Opala; Barbara Jasinska-Myga; Andreas Puschmann; Christer Nilsson; Alberto J. Espay; Jarosław Sławek; Ludwig Gutmann; Bradley F. Boeve; Kevin B. Boylan

Our understanding of the molecular mechanisms of many neurological disorders has been greatly enhanced by the discovery of mutations in genes linked to familial forms of these diseases. These have facilitated the generation of cell and animal models that can be used to understand the underlying molecular pathology. Recently, there has been a surge of interest in the use of patient-derived cells, due to the development of induced pluripotent stem cells and their subsequent differentiation into neurons and glia. Access to patient cell lines carrying the relevant mutations is a limiting factor for many centres wishing to pursue this research. We have therefore generated an open-access collection of fibroblast lines from patients carrying mutations linked to neurological disease. These cell lines have been deposited in the National Institute for Neurological Disorders and Stroke (NINDS) Repository at the Coriell Institute for Medical Research and can be requested by any research group for use in in vitro disease modelling. There are currently 71 mutation-defined cell lines available for request from a wide range of neurological disorders and this collection will be continually expanded. This represents a significant resource that will advance the use of patient cells as disease models by the scientific community.


Human Molecular Genetics | 2012

G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization

Tatiana D. Papkovskaia; Kai-Yin Chau; Francisco Inesta-Vaquera; Dmitri B. Papkovsky; Daniel G. Healy; Koji Nishio; James Michael Staddon; Michael R. Duchen; John Hardy; A. H. V. Schapira; J. Mark Cooper

The G2019S leucine rich repeat kinase 2 (LRRK2) mutation is the most common genetic cause of Parkinsons disease (PD), clinically and pathologically indistinguishable from idiopathic PD. Mitochondrial abnormalities are a common feature in PD pathogenesis and we have investigated the impact of G2019S mutant LRRK2 expression on mitochondrial bioenergetics. LRRK2 protein expression was detected in fibroblasts and lymphoblasts at levels higher than those observed in the mouse brain. The presence of G2019S LRRK2 mutation did not influence LRRK2 expression in fibroblasts. However, the expression of the G2019S LRRK2 mutation in both fibroblast and neuroblastoma cells was associated with mitochondrial uncoupling. This was characterized by decreased mitochondrial membrane potential and increased oxygen utilization under basal and oligomycin-inhibited conditions. This resulted in a decrease in cellular ATP levels consistent with compromised cellular function. This uncoupling of mitochondrial oxidative phosphorylation was associated with a cell-specific increase in uncoupling protein (UCP) 2 and 4 expression. Restoration of mitochondrial membrane potential by the UCP inhibitor genipin confirmed the role of UCPs in this mechanism. The G2019S LRRK2-induced mitochondrial uncoupling and UCP4 mRNA up-regulation were LRRK2 kinase-dependent, whereas endogenous LRRK2 levels were required for constitutive UCP expression. We propose that normal mitochondrial function was deregulated by the expression of G2019S LRRK2 in a kinase-dependent mechanism that is a modification of the normal LRRK2 function, and this leads to the vulnerability of selected neuronal populations in PD.


Neurology | 2004

PINK1 (PARK6) associated Parkinson disease in Ireland

Daniel G. Healy; Patrick M. Abou-Sleiman; J. M. Gibson; O. A. Ross; Shushant Jain; S Gandhi; D. Gosal; Miratul M. K. Muqit; Nicholas W. Wood; Timothy Lynch

Mutations in the PINK1 gene have recently been shown to cause autosomal recessive Parkinson disease (PD). The authors assessed the prevalence of PINK1 gene mutations in 290 well-characterized early- and late-onset PD patients from Ireland. In a 51-year-old PD patient with a family history of PD, the authors identified a novel heterozygous mutation (R147H) in exon 2 of the PINK1 gene. Overall, these data indicate that PINK1 mutations are a rare cause of PD in Ireland.

Collaboration


Dive into the Daniel G. Healy's collaboration.

Top Co-Authors

Avatar

Nicholas W. Wood

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Lees

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Tamas Revesz

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Janice L. Holton

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Timothy Lynch

Mater Misericordiae University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N Quinn

University College London

View shared research outputs
Top Co-Authors

Avatar

Niall Quinn

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge