Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel G. Hurley is active.

Publication


Featured researches published by Daniel G. Hurley.


Journal of Neuroinflammation | 2014

A role for human brain pericytes in neuroinflammation

Deidre Jansson; Justin Rustenhoven; Sheryl Feng; Daniel G. Hurley; Robyn L. Oldfield; Peter S. Bergin; Edward W. Mee; Richard L.M. Faull; M. Dragunow

BackgroundBrain inflammation plays a key role in neurological disease. Although much research has been conducted investigating inflammatory events in animal models, potential differences in human brain versus rodent models makes it imperative that we also study these phenomena in human cells and tissue.MethodsPrimary human brain cell cultures were generated from biopsy tissue of patients undergoing surgery for drug-resistant epilepsy. Cells were treated with pro-inflammatory compounds IFNγ, TNFα, IL-1β, and LPS, and chemokines IP-10 and MCP-1 were measured by immunocytochemistry, western blot, and qRT-PCR. Microarray analysis was also performed on late passage cultures treated with vehicle or IFNγ and IL-1β.ResultsEarly passage human brain cell cultures were a mixture of microglia, astrocytes, fibroblasts and pericytes. Later passage cultures contained proliferating fibroblasts and pericytes only. Under basal culture conditions all cell types showed cytoplasmic NFκB indicating that they were in a non-activated state. Expression of IP-10 and MCP-1 were significantly increased in response to pro-inflammatory stimuli. The two chemokines were expressed in mixed cultures as well as cultures of fibroblasts and pericytes only. The expression of IP-10 and MCP-1 were regulated at the mRNA and protein level, and both were secreted into cell culture media. NFκB nuclear translocation was also detected in response to pro-inflammatory cues (except IFNγ) in all cell types. Microarray analysis of brain pericytes also revealed widespread changes in gene expression in response to the combination of IFNγ and IL-1β treatment including interleukins, chemokines, cellular adhesion molecules and much more.ConclusionsAdult human brain cells are sensitive to cytokine challenge. As expected ‘classical’ brain immune cells, such as microglia and astrocytes, responded to cytokine challenge but of even more interest, brain pericytes also responded to such challenge with a rich repertoire of gene expression. Immune activation of brain pericytes may play an important role in communicating inflammatory signals to and within the brain interior and may also be involved in blood brain barrier (BBB) disruption . Targeting brain pericytes, as well as microglia and astrocytes, may provide novel opportunities for reducing brain inflammation and maintaining BBB function and brain homeostasis in human brain disease.


Nucleic Acids Research | 2012

Gene network inference and visualization tools for biologists: application to new human transcriptome datasets

Daniel G. Hurley; Hiromitsu Araki; Yoshinori Tamada; Ben Dunmore; Deborah A. Sanders; Sally Humphreys; Muna Affara; Seiya Imoto; Kaori Yasuda; Yuki Tomiyasu; Kosuke Tashiro; Christopher J. Savoie; Vicky Cho; Stephen G. J. Smith; Satoru Miyano; D. Stephen Charnock-Jones; Edmund J. Crampin; Cristin G. Print

Gene regulatory networks inferred from RNA abundance data have generated significant interest, but despite this, gene network approaches are used infrequently and often require input from bioinformaticians. We have assembled a suite of tools for analysing regulatory networks, and we illustrate their use with microarray datasets generated in human endothelial cells. We infer a range of regulatory networks, and based on this analysis discuss the strengths and limitations of network inference from RNA abundance data. We welcome contact from researchers interested in using our inference and visualization tools to answer biological questions.


Briefings in Bioinformatics | 2015

Predictive modelling of gene expression from transcriptional regulatory elements

David M. Budden; Daniel G. Hurley; Edmund J. Crampin

Predictive modelling of gene expression provides a powerful framework for exploring the regulatory logic underpinning transcriptional regulation. Recent studies have demonstrated the utility of such models in identifying dysregulation of gene and miRNA expression associated with abnormal patterns of transcription factor (TF) binding or nucleosomal histone modifications (HMs). Despite the growing popularity of such approaches, a comparative review of the various modelling algorithms and feature extraction methods is lacking. We define and compare three methods of quantifying pairwise gene-TF/HM interactions and discuss their suitability for integrating the heterogeneous chromatin immunoprecipitation (ChIP)-seq binding patterns exhibited by TFs and HMs. We then construct log-linear and ϵ-support vector regression models from various mouse embryonic stem cell (mESC) and human lymphoblastoid (GM12878) data sets, considering both ChIP-seq- and position weight matrix- (PWM)-derived in silico TF-binding. The two algorithms are evaluated both in terms of their modelling prediction accuracy and ability to identify the established regulatory roles of individual TFs and HMs. Our results demonstrate that TF-binding and HMs are highly predictive of gene expression as measured by mRNA transcript abundance, irrespective of algorithm or cell type selection and considering both ChIP-seq and PWM-derived TF-binding. As we encourage other researchers to explore and develop these results, our framework is implemented using open-source software and made available as a preconfigured bootable virtual environment.


Epigenetics & Chromatin | 2014

Predicting expression: the complementary power of histone modification and transcription factor binding data

David M. Budden; Daniel G. Hurley; Joseph Cursons; John F. Markham; Melissa J. Davis; Edmund J. Crampin

BackgroundTranscription factors (TFs) and histone modifications (HMs) play critical roles in gene expression by regulating mRNA transcription. Modelling frameworks have been developed to integrate high-throughput omics data, with the aim of elucidating the regulatory logic that results from the interactions of DNA, TFs and HMs. These models have yielded an unexpected and poorly understood result: that TFs and HMs are statistically redundant in explaining mRNA transcript abundance at a genome-wide level.ResultsWe constructed predictive models of gene expression by integrating RNA-sequencing, TF and HM chromatin immunoprecipitation sequencing and DNase I hypersensitivity data for two mammalian cell types. All models identified genome-wide statistical redundancy both within and between TFs and HMs, as previously reported. To investigate potential explanations, groups of genes were constructed for ontology-classified biological processes. Predictive models were constructed for each process to explore the distribution of statistical redundancy. We found significant variation in the predictive capacity of TFs and HMs across these processes and demonstrated the predictive power of HMs to be inversely proportional to process enrichment for housekeeping genes.ConclusionsIt is well established that the roles played by TFs and HMs are not functionally redundant. Instead, we attribute the statistical redundancy reported in this and previous genome-wide modelling studies to the heterogeneous distribution of HMs across chromatin domains. Furthermore, we conclude that statistical redundancy between individual TFs can be readily explained by nucleosome-mediated cooperative binding. This could possibly help the cell confer regulatory robustness by rejecting signalling noise and allowing control via multiple pathways.


Briefings in Bioinformatics | 2015

Virtual Reference Environments: a simple way to make research reproducible

Daniel G. Hurley; David M. Budden; Edmund J. Crampin

‘Reproducible research’ has received increasing attention over the past few years as bioinformatics and computational biology methodologies become more complex. Although reproducible research is progressing in several valuable ways, we suggest that recent increases in internet bandwidth and disk space, along with the availability of open-source and free-software licences for tools, enable another simple step to make research reproducible. In this article, we urge the creation of minimal virtual reference environments implementing all the tools necessary to reproduce a result, as a standard part of publication. We address potential problems with this approach, and show an example environment from our own work.


PLOS ONE | 2012

Cell cycle gene networks are associated with melanoma prognosis.

Li Wang; Daniel G. Hurley; Wendy J. Watkins; Hiromitsu Araki; Yoshinori Tamada; Anita Muthukaruppan; Louis Ranjard; Eliane Derkac; Seiya Imoto; Satoru Miyano; Edmund J. Crampin; Cristin G. Print

Background Our understanding of the molecular pathways that underlie melanoma remains incomplete. Although several published microarray studies of clinical melanomas have provided valuable information, we found only limited concordance between these studies. Therefore, we took an in vitro functional genomics approach to understand melanoma molecular pathways. Methodology/Principal Findings Affymetrix microarray data were generated from A375 melanoma cells treated in vitro with siRNAs against 45 transcription factors and signaling molecules. Analysis of this data using unsupervised hierarchical clustering and Bayesian gene networks identified proliferation-association RNA clusters, which were co-ordinately expressed across the A375 cells and also across melanomas from patients. The abundance in metastatic melanomas of these cellular proliferation clusters and their putative upstream regulators was significantly associated with patient prognosis. An 8-gene classifier derived from gene network hub genes correctly classified the prognosis of 23/26 metastatic melanoma patients in a cross-validation study. Unlike the RNA clusters associated with cellular proliferation described above, co-ordinately expressed RNA clusters associated with immune response were clearly identified across melanoma tumours from patients but not across the siRNA-treated A375 cells, in which immune responses are not active. Three uncharacterised genes, which the gene networks predicted to be upstream of apoptosis- or cellular proliferation-associated RNAs, were found to significantly alter apoptosis and cell number when over-expressed in vitro. Conclusions/Significance This analysis identified co-expression of RNAs that encode functionally-related proteins, in particular, proliferation-associated RNA clusters that are linked to melanoma patient prognosis. Our analysis suggests that A375 cells in vitro may be valid models in which to study the gene expression modules that underlie some melanoma biological processes (e.g., proliferation) but not others (e.g., immune response). The gene expression modules identified here, and the RNAs predicted by Bayesian network inference to be upstream of these modules, are potential prognostic biomarkers and drug targets.


Nature Neuroscience | 2017

Mural lymphatic endothelial cells regulate meningeal angiogenesis in the zebrafish

Neil I. Bower; Katarzyna Koltowska; Cathy Pichol-Thievend; Isaac Virshup; Scott Paterson; Anne Karine Lagendijk; Weili Wang; Benjamin W. Lindsey; Stephen J. Bent; Sungmin Baek; Maria Rondon-Galeano; Daniel G. Hurley; Naoki Mochizuki; Cas Simons; Mathias Francois; Christine A. Wells; Jan Kaslin; Benjamin M. Hogan

Mural cells of the vertebrate brain maintain vascular integrity and function, play roles in stroke and are involved in maintenance of neural stem cells. However, the origins, diversity and roles of mural cells remain to be fully understood. Using transgenic zebrafish, we identified a population of isolated mural lymphatic endothelial cells surrounding meningeal blood vessels. These meningeal mural lymphatic endothelial cells (muLECs) express lymphatic endothelial cell markers and form by sprouting from blood vessels. In larvae, muLECs develop from a lymphatic endothelial loop in the midbrain into a dispersed, nonlumenized mural lineage. muLEC development requires normal signaling through the Vegfc–Vegfd–Ccbe1–Vegfr3 pathway. Mature muLECs produce vascular growth factors and accumulate low-density lipoproteins from the bloodstream. We find that muLECs are essential for normal meningeal vascularization. Together, these data identify an unexpected lymphatic lineage and developmental mechanism necessary for establishing normal meningeal blood vasculature.


PLOS ONE | 2013

Links between the Oncoprotein YB-1 and Small Non- Coding RNAs in Breast Cancer

Cherie Blenkiron; Daniel G. Hurley; Sandra Fitzgerald; Cristin G. Print; Annette Lasham

Background The nucleic acid-binding protein YB-1, a member of the cold-shock domain protein family, has been implicated in the progression of breast cancer and is associated with poor patient survival. YB-1 has sequence similarity to LIN28, another cold-shock protein family member, which has a role in the regulation of small noncoding RNAs (sncRNAs) including microRNAs (miRNAs). Therefore, to investigate whether there is an association between YB-1 and sncRNAs in breast cancer, we investigated whether sncRNAs were bound by YB-1 in two breast cancer cell lines (luminal A-like and basal cell-like), and whether the abundance of sncRNAs and mRNAs changed in response to experimental reduction of YB-1 expression. Results RNA-immunoprecipitation with an anti-YB-1 antibody showed that several sncRNAs are bound by YB-1. Some of these were bound by YB-1 in both breast cancer cell lines; others were cell-line specific. The small RNAs bound by YB-1 were derived from various sncRNA families including miRNAs such as let-7 and miR-320, transfer RNAs, ribosomal RNAs and small nucleolar RNAs (snoRNA). Reducing YB-1 expression altered the abundance of a number of transcripts encoding miRNA biogenesis and processing proteins but did not alter the abundance of mature or precursor miRNAs. Conclusions YB-1 binds to specific miRNAs, snoRNAs and tRNA-derived fragments and appears to regulate the expression of miRNA biogenesis and processing machinery. We propose that some of the oncogenic effects of YB-1 in breast cancer may be mediated through its interactions with sncRNAs.


Journal of Neurochemistry | 2012

Harnessing pain heterogeneity and RNA transcriptome to identify blood-based pain biomarkers: a novel correlational study design and bioinformatics approach in a graded chronic constriction injury model

Peter M. Grace; Daniel G. Hurley; Daniel T. Barratt; Anna Tsykin; Linda R. Watkins; Paul Rolan; Mark R. Hutchinson

J. Neurochem. (2012) 122, 976–994.


Biochemical Pharmacology | 2014

The flavoprotein FOXRED2 reductively activates nitro-chloromethylbenzindolines and other hypoxia-targeting prodrugs

Francis W. Hunter; Jagdish K. Jaiswal; Daniel G. Hurley; H. D. Sarath Liyanage; Sarah P. McManaway; Yongchuan Gu; Susan Richter; Jingli Wang; Moana Tercel; Cristin G. Print; William R. Wilson; Frederik B. Pruijn

The nitro-chloromethylbenzindoline prodrug SN29428 has been rationally designed to target tumour hypoxia. SN29428 is metabolised to a DNA minor groove alkylator via oxygen-sensitive reductive activation initiated by unknown one-electron reductases. The present study sought to identify reductases capable of activating SN29428 in tumours. Expression of candidate reductases in cell lines was modulated using forced expression and, for P450 (cytochrome) oxidoreductase (POR), by zinc finger nuclease-mediated gene knockout. Affymetrix microarray mRNA expression of flavoreductases was correlated with SN29428 activation in a panel of 23 cancer cell lines. Reductive activation and cytotoxicity of prodrugs were measured using mass spectrometry and antiproliferative assays, respectively. SN29428 activation under hypoxia was strongly attenuated by the pan-flavoprotein inhibitor diphenyliodonium, but less so by knockout of POR suggesting other flavoreductases contribute. Forced expression of 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), as well as POR, increased activation of SN29428 in hypoxic HCT 116 cells. SN29428 activation strongly correlated with expression of POR and also FAD-dependent oxidoreductase domain containing 2 (FOXRED2), in cancer cell lines. This association persisted after removing the effect of POR enzyme activity using first-order partial correlation. Forced expression of FOXRED2 increased SN29428 activation and cytotoxicity in hypoxic HEK293 cells and also increased activation of hypoxia-targeted prodrugs PR-104A, tirapazamine and SN30000, and increased cytotoxicity of the clinical-stage prodrug TH-302. Thus this study has identified three flavoreductases capable of enzymatically activating SN29428, one of which (FOXRED2) has not previously been implicated in xenobiotic metabolism. These results will inform future development of biomarkers predictive of SN29428 sensitivity.

Collaboration


Dive into the Daniel G. Hurley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Cursons

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Budden

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David M. Budden

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge