Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel G. Pellicci is active.

Publication


Featured researches published by Daniel G. Pellicci.


Nature | 2007

CD1d–lipid-antigen recognition by the semi-invariant NKT T-cell receptor

Natalie A. Borg; Kwok Soon Wun; Lars Kjer-Nielsen; Matthew C. J. Wilce; Daniel G. Pellicci; Ruide Koh; Gurdyal S. Besra; Mandvi Bharadwaj; Dale I. Godfrey; James McCluskey; Jamie Rossjohn

The CD1 family is a large cluster of non-polymorphic, major histocompatibility complex (MHC) class-I-like molecules that bind distinct lipid-based antigens that are recognized by T cells. The most studied group of T cells that interact with lipid antigens are natural killer T (NKT) cells, which characteristically express a semi-invariant T-cell receptor (NKT TCR) that specifically recognizes the CD1 family member, CD1d. NKT-cell-mediated recognition of the CD1d–antigen complex has been implicated in microbial immunity, tumour immunity, autoimmunity and allergy. Here we describe the structure of a human NKT TCR in complex with CD1d bound to the potent NKT-cell agonist α-galactosylceramide, the archetypal CD1d-restricted glycolipid. In contrast to T-cell receptor–peptide-antigen–MHC complexes, the NKT TCR docked parallel to, and at the extreme end of the CD1d-binding cleft, which enables a lock-and-key type interaction with the lipid antigen. The structure provides a basis for the interaction between the highly conserved NKT TCR α-chain and the CD1d–antigen complex that is typified in innate immunity, and also indicates how variability of the NKT TCR β-chain can impact on recognition of other CD1d–antigen complexes. These findings provide direct insight into how a T-cell receptor recognizes a lipid-antigen-presenting molecule of the immune system.


Journal of Experimental Medicine | 2005

Differential antitumor immunity mediated by NKT cell subsets in vivo

Nadine Y. Crowe; Jonathan M. Coquet; Stuart P. Berzins; Konstantinos Kyparissoudis; Rachael Keating; Daniel G. Pellicci; Yoshihiro Hayakawa; Dale I. Godfrey; Mark J. Smyth

We showed previously that NKT cell–deficient TCR Jα18−/− mice are more susceptible to methylcholanthrene (MCA)-induced sarcomas, and that normal tumor surveillance can be restored by adoptive transfer of WT liver-derived NKT cells. Liver-derived NKT cells were used in these studies because of their relative abundance in this organ, and it was assumed that they were representative of NKT cells from other sites. We compared NKT cells from liver, thymus, and spleen for their ability to mediate rejection of the sarcoma cell line (MCA-1) in vivo, and found that this was a specialized function of liver-derived NKT cells. Furthermore, when CD4+ and CD4− liver-derived NKT cells were administered separately, MCA-1 rejection was mediated primarily by the CD4− fraction. Very similar results were achieved using the B16F10 melanoma metastasis model, which requires NKT cell stimulation with α-galactosylceramide. The impaired ability of thymus-derived NKT cells was due, in part, to their production of IL-4, because tumor immunity was clearly enhanced after transfer of IL-4–deficient thymus-derived NKT cells. This is the first study to demonstrate the existence of functionally distinct NKT cell subsets in vivo and may shed light on the long-appreciated paradox that NKT cells function as immunosuppressive cells in some disease models, whereas they promote cell-mediated immunity in others.


Journal of Experimental Medicine | 2002

A Natural Killer T (NKT) Cell Developmental Pathway Involving a Thymus-dependent NK1.1−CD4+ CD1d-dependent Precursor Stage

Daniel G. Pellicci; Kirsten J. L. Hammond; Adam P. Uldrich; Alan G. Baxter; Mark J. Smyth; Dale I. Godfrey

The development of CD1d-dependent natural killer T (NKT) cells is poorly understood. We have used both CD1d/α-galactosylceramide (CD1d/αGC) tetramers and anti-NK1.1 to investigate NKT cell development in vitro and in vivo. Confirming the thymus-dependence of these cells, we show that CD1d/αGC tetramer-binding NKT cells, including NK1.1+ and NK1.1− subsets, develop in fetal thymus organ culture (FTOC) and are completely absent in nude mice. Ontogenically, CD1d/αGC tetramer-binding NKT cells first appear in the thymus, at day 5 after birth, as CD4+CD8−NK1.1−cells. NK1.1+ NKT cells, including CD4+ and CD4−CD8− subsets, appeared at days 7–8 but remained a minor subset until at least 3 wk of age. Using intrathymic transfer experiments, CD4+NK1.1− NKT cells gave rise to NK1.1+ NKT cells (including CD4+ and CD4− subsets), but not vice-versa. This maturation step was not required for NKT cells to migrate to other tissues, as NK1.1− NKT cells were detected in liver and spleen as early as day 8 after birth, and the majority of NKT cells among recent thymic emigrants (RTE) were NK1.1−. Further elucidation of this NKT cell developmental pathway should prove to be invaluable for studying the mechanisms that regulate the development of these cells.


Journal of Immunology | 2007

IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production.

Jonathan M. Coquet; Konstantinos Kyparissoudis; Daniel G. Pellicci; Gurdyal S. Besra; Stuart P. Berzins; Mark J. Smyth; Dale I. Godfrey

The common γ-chain cytokine, IL-21, is produced by CD4+ T cells and mediates potent effects on a variety of immune cells including NK, T, and B cells. NKT cells express the receptor for IL-21; however, the effect of this cytokine on NKT cell function has not been studied. We show that IL-21 on its own enhances survival of NKT cells in vitro, and IL-21 increases the proliferation of NKT cells in combination with IL-2 or IL-15, and particularly with the CD1d-restricted glycosphingolipid Ag α-galactosylceramide. Similar to its effects on NK cells, IL-21 enhances NKT cell granular morphology, including granzyme B expression, and some inhibitory NK receptors, including Ly49C/I and CD94. IL-21 also enhanced NKT cell cytokine production in response to anti-CD3/CD28 in vitro. Furthermore, NKT cells may be subject to autocrine IL-21-mediated stimulation because they are potent producers of this cytokine following in vitro stimulation via CD3 and CD28, particularly in conjunction with IL-12 or following in vivo stimulation with α-galactosylceramide. Indeed, NKT cells produced much higher levels of IL-21 than conventional CD4 T cells in this assay. This study demonstrates that NKT cells are potentially a major source of IL-21, and that IL-21 may be an important factor in NKT cell-mediated immune regulation, both in its effects on NK, T, and B cells, as well as direct effects on NKT cells themselves. The influence of IL-21 in NKT cell-dependent models of tumor rejection, microbial clearance, autoimmunity, and allergy should be the subject of future investigations.


Nature Reviews Immunology | 2012

Recognition of CD1d-restricted antigens by natural killer T cells

Jamie Rossjohn; Daniel G. Pellicci; Onisha Patel; Laurent Gapin; Dale I. Godfrey

Natural killer T (NKT) cells are innate-like T cells that rapidly produce a variety of cytokines following T cell receptor (TCR) activation and can shape the immune response in many different settings. There are two main NKT cell subsets: type I NKT cells are typically characterized by the expression of a semi-invariant TCR, whereas the TCRs expressed by type II NKT cells are more diverse. This Review focuses on the defining features and emerging generalities regarding how NKT cells specifically recognize self, microbial and synthetic lipid-based antigens that are presented by CD1d. Such information is vitally important to better understand, and fully harness, the therapeutic potential of NKT cells.


Journal of Immunology | 2001

CD1d-Restricted NKT Cells: An Interstrain Comparison

Kirsten J. L. Hammond; Daniel G. Pellicci; Lynn D. Poulton; Olga V. Naidenko; Anthony A. Scalzo; Alan G. Baxter; Dale I. Godfrey

CD1d-restricted Vα14-Jα281 invariant αβTCR+ (NKT) cells are well defined in the C57BL/6 mouse strain, but they remain poorly characterized in non-NK1.1-expressing strains. Surrogate markers for NKT cells such as αβTCR+CD4−CD8− and DX5+CD3+ have been used in many studies, although their effectiveness in defining this lineage remains to be verified. Here, we compare NKT cells among C57BL/6, NK1.1-congenic BALB/c, and NK1.1-congenic nonobese diabetic mice. NKT cells were identified and compared using a range of approaches: NK1.1 expression, surrogate phenotypes used in previous studies, labeling with CD1d/α-galactosylceramide tetramers, and cytokine production. Our results demonstrate that NKT cells and their CD4/CD8-defined subsets are present in all three strains, and confirm that nonobese diabetic mice have a numerical and functional deficiency in these cells. We also highlight the hazards of using surrogate phenotypes, none of which accurately identify NKT cells, and one in particular (DX5+CD3+) actually excludes these cells. Finally, our results support the concept that NK1.1 expression may not be an ideal marker for CD1d-restricted NKT cells, many of which are NK1.1-negative, especially within the CD4+ subset and particularly in NK1.1-congenic BALB/c mice.


Immunity | 2009

Differential Recognition of CD1d-α-Galactosyl Ceramide by the Vβ8.2 and Vβ7 Semi-invariant NKT T Cell Receptors

Daniel G. Pellicci; Onisha Patel; Lars Kjer-Nielsen; Siew Siew Pang; Lucy C. Sullivan; Konstantinos Kyparissoudis; Andrew G. Brooks; Hugh H. Reid; Stephanie Gras; Isabelle S. Lucet; Ruide Koh; Mark J. Smyth; Thierry Mallevaey; Jennifer L. Matsuda; Laurent Gapin; James McCluskey; Dale I. Godfrey; Jamie Rossjohn

The semi-invariant natural killer T cell receptor (NKT TCR) recognizes CD1d-lipid antigens. Although the TCR alpha chain is typically invariant, the beta chain expression is more diverse, where three V beta chains are commonly expressed in mice. We report the structures of V alpha 14-V beta 8.2 and V alpha 14-V beta 7 NKT TCRs in complex with CD1d-alpha-galactosylceramide (alpha-GalCer) and the 2.5 A structure of the human NKT TCR-CD1d-alpha-GalCer complex. Both V beta 8.2 and V beta 7 NKT TCRs and the human NKT TCR ligated CD1d-alpha-GalCer in a similar manner, highlighting the evolutionarily conserved interaction. However, differences within the V beta domains of the V beta 8.2 and V beta 7 NKT TCR-CD1d complexes resulted in altered TCR beta-CD1d-mediated contacts and modulated recognition mediated by the invariant alpha chain. Mutagenesis studies revealed the differing contributions of V beta 8.2 and V beta 7 residues within the CDR2 beta loop in mediating contacts with CD1d. Collectively we provide a structural basis for the differential NKT TCR V beta usage in NKT cells.


Journal of Immunology | 2005

NKT Cell Stimulation with Glycolipid Antigen In Vivo: Costimulation-Dependent Expansion, Bim-Dependent Contraction, and Hyporesponsiveness to Further Antigenic Challenge

Adam P. Uldrich; Nadine Y. Crowe; Konstantinos Kyparissoudis; Daniel G. Pellicci; Yifan Zhan; Andrew M. Lew; Andreas Strasser; Mark J. Smyth; Dale I. Godfrey

Activation of NKT cells using the glycolipid α-galactosylceramide (α-GalCer) has availed many investigations into their immunoregulatory and therapeutic potential. However, it remains unclear how they respond to stimulation in vivo, which costimulatory pathways are important, and what factors (e.g., Ag availability and activation-induced cell death) limit their response. We have explored these questions in the context of an in vivo model of NKT cell dynamics spanning activation, population expansion, and subsequent contraction. Neither the B7/CD28 nor the CD40/CD40L costimulatory pathway was necessary for cytokine production by activated NKT cells, either early (2 h) or late (3 days) after initial stimulation, but both pathways were necessary for normal proliferative expansion of NKT cells in vivo. The proapoptotic Bcl-2 family member Bim was necessary for normal contraction of the NKT cell population between days 3–9 after stimulation, suggesting that the pool size is regulated by apoptotic death, similar to that of conventional T cells. Ag availability was not the limiting factor for NKT cell expansion in vivo, and a second α-GalCer injection induced a very blunted response, whereby cytokine production was reduced and further expansion did not occur. This appeared to be a form of anergy that was intrinsic to NKT cells and was not associated with inhibitory NK receptor signaling. Furthermore, NKT cells from mice prechallenged with α-GalCer in vivo showed little cytokine production and reduced proliferation in vitro. In summary, this study significantly enhances our understanding of how NKT cells respond to primary and secondary antigenic challenge in vivo.


Science | 2016

Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes

Laura K. Mackay; Martina Minnich; Natasja A. M. Kragten; Yang Liao; Benjamin Nota; Cyril Seillet; Ali Zaid; Kevin Man; Simon Preston; David Freestone; Asolina Braun; Erica Wynne-Jones; Felix M. Behr; Regina Stark; Daniel G. Pellicci; Dale I. Godfrey; Gabrielle T. Belz; Marc Pellegrini; Thomas Gebhardt; Meinrad Busslinger; Wei Shi; Francis R. Carbone; René A. W. van Lier; Axel Kallies; Klaas P. J. M. van Gisbergen

Transcription factors define tissue T cells The immune system fights microbial invaders by maintaining multiple lines of defense. For instance, specialized memory T cells [resident memory T cells (Trms)] colonize portals of pathogen entry, such as the skin, lung, and gut, to quickly halt reinfections. Mackay et al. now report that in mice, Trms as well as other tissue-dwelling lymphocyte populations such as natural killer cells share a common transcriptional program driven by the related transcription factors Hobit and Blimp1. Tissue residency and retention of lymphocytes require expression of Hobit and Blimp1, which, among other functions, suppress genes that promote tissue exit. Science, this issue p. 459 Tissue-dwelling lymphocyte populations share a common transcriptional signature. Tissue-resident memory T (Trm) cells permanently localize to portals of pathogen entry, where they provide immediate protection against reinfection. To enforce tissue retention, Trm cells up-regulate CD69 and down-regulate molecules associated with tissue egress; however, a Trm-specific transcriptional regulator has not been identified. Here, we show that the transcription factor Hobit is specifically up-regulated in Trm cells and, together with related Blimp1, mediates the development of Trm cells in skin, gut, liver, and kidney in mice. The Hobit-Blimp1 transcriptional module is also required for other populations of tissue-resident lymphocytes, including natural killer T (NKT) cells and liver-resident NK cells, all of which share a common transcriptional program. Our results identify Hobit and Blimp1 as central regulators of this universal program that instructs tissue retention in diverse tissue-resident lymphocyte populations.


Nature Immunology | 2013

CD1d-lipid antigen recognition by the γδ TCR

Adam P. Uldrich; Jérôme Le Nours; Daniel G. Pellicci; Nicholas A. Gherardin; Kristy G McPherson; R.T. Lim; Onisha Patel; Travis Beddoe; Stephanie Gras; Jamie Rossjohn; Dale I. Godfrey

The T cell repertoire comprises αβ and γδ T cell lineages. Although it is established how αβ T cell antigen receptors (TCRs) interact with antigen presented by antigen-presenting molecules, this is unknown for γδ TCRs. We describe a population of human Vδ1+ γδ T cells that exhibit autoreactivity to CD1d and provide a molecular basis for how a γδ TCR binds CD1d–α-galactosylceramide (α-GalCer). The γδ TCR docked orthogonally, over the A′ pocket of CD1d, in which the Vδ1-chain, and in particular the germ line–encoded CDR1δ loop, dominated interactions with CD1d. The TCR γ-chain sat peripherally to the interface, with the CDR3γ loop representing the principal determinant for α-GalCer specificity. Accordingly, we provide insight into how a γδ TCR binds specifically to a lipid-loaded antigen-presenting molecule.

Collaboration


Dive into the Daniel G. Pellicci's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy R. Howell

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Steven A. Porcelli

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge