Daniel G. Wootton
University of Liverpool
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel G. Wootton.
Malaria Journal | 2009
David J. Bell; Daniel G. Wootton; Mavuto Mukaka; Jacqui Montgomery; Noel Kayange; Phillips Chimpeni; Dyfrig A. Hughes; Malcolm E. Molyneux; Steve A. Ward; Peter Winstanley; David G. Lalloo
BackgroundSulphadoxine-pyrimethamine (SP) is the only single dose therapy for uncomplicated malaria, but there is widespread resistance. At the time of this study, artemether-lumefantrine (AL) and chlorproguanil-dapsone (CPD), both multi-dose regimes, were considered possible alternatives to SP in Malawi. The aim of this study was to investigate the impact of poor adherence on the effectiveness of AL and CPD.MethodsChildren ≥12 months and adults with uncomplicated malaria were randomized to receive AL, CPD or SP. Adherence was measured using a questionnaire and electronic monitoring devices, MEMS™, pill bottles that recorded the date and time of opening. Day-7 plasma dapsone or lumefantrine concentrations were measured to examine their relationship with adherence and clinical response.Results841 patients were recruited. The day-28 adequate clinical and parasitological response (ACPR) rates, using intention to treat analysis (missing data treated as failure), were AL 85.2%, CPD 63.7% and SP 50%. ACPR rates for AL were higher than CPD or SP on days 28 and 42 (p ≤ 0.002 for all comparisons). CPD was more effective than SP on day-28 (p = 0.01), but not day-42.Very high adherence was reported using the questionnaire, 100% for AL treated patients and 99.2% for the CPD group. Only three CPD participants admitted missing any doses. 164/181 (90.6%) of CPD treated patients took all their doses out of the MEMS™ container and they were more likely to have a day-28 ACPR than those who did not take all their medication out of the container, p = 0.024. Only 7/87 (8%) AL treated patients did not take all of their doses out of their MEMS™ container and none had treatment failure.Median day-7 dapsone concentrations were higher in CPD treated patients with ACPR than in treatment failures, p = 0.012. There were no differences in day-7 dapsone or lumefantrine concentrations between those who took all their doses from the MEMS™ container and those who did not. A day-7 lumefantrine concentration reported to be predictive of AL treatment failure in Thailand was not useful in this population; only one of 16 participants with a concentration below this threshold (175 ng/ml) had treatment failure.ConclusionThis study provides reassurance of the effectiveness of AL, even with unsupervised dosing, as it is rolled out across sub-Saharan Africa. Self-reported adherence appears to be an unreliable measure of adherence in this population.
American Journal of Respiratory Cell and Molecular Biology | 2015
Jamie Rylance; Duncan G. Fullerton; James Scriven; Abdullah Aljurayyan; David Mzinza; S.D. Barrett; Adam K. A. Wright; Daniel G. Wootton; Sarah J. Glennie; Katy Baple; Amy Knott; Kevin Mortimer; David G. Russell; Robert S. Heyderman; Stephen B. Gordon
Three billion people are exposed to household air pollution from biomass fuel use. Exposure is associated with higher incidence of pneumonia, and possibly tuberculosis. Understanding mechanisms underlying these defects would improve preventive strategies. We used human alveolar macrophages obtained from healthy Malawian adults exposed naturally to household air pollution and compared them with human monocyte-derived macrophages exposed in vitro to respirable-sized particulates. Cellular inflammatory response was assessed by IL-6 and IL-8 production in response to particulate challenge; phagosomal function was tested by uptake and oxidation of fluorescence-labeled beads; ingestion and killing of Streptococcus pneumoniae and Mycobacterium tuberculosis were measured by microscopy and quantitative culture. Particulate ingestion was quantified by digital image analysis. We were able to reproduce the carbon loading of naturally exposed alveolar macrophages by in vitro exposure of monocyte-derived macrophages. Fine carbon black induced IL-8 release from monocyte-derived and alveolar macrophages (P < 0.05) with similar magnitude responses (log10 increases of 0.93 [SEM = 0.2] versus 0.74 [SEM = 0.19], respectively). Phagocytosis of pneumococci and mycobacteria was impaired with higher particulate loading. High particulate loading corresponded with a lower oxidative burst capacity (P = 0.0015). There was no overall effect on killing of M. tuberculosis. Alveolar macrophage function is altered by particulate loading. Our macrophage model is comparable morphologically to the in vivo uptake of particulates. Wood smoke-exposed cells demonstrate reduced phagocytosis, but unaffected mycobacterial killing, suggesting defects related to chronic wood smoke inhalation limited to specific innate immune functions.
PLOS ONE | 2008
Daniel G. Wootton; Hyginus Opara; Giancarlo A. Biagini; Maxwell Kanjala; Stephan Duparc; Paula L. Kirby; Mary Woessner; Colin Neate; Maggie Nyirenda; Hannah Blencowe; Queen Dube-Mbeye; Thomas Kanyok; Stephen A. Ward; Malcolm E. Molyneux; Sam Dunyo; Peter Winstanley
The objective of this study was to determine the appropriate dose of artesunate for use in a fixed dose combination therapy with chlorproguanil−dapsone (CPG−DDS) for the treatment of uncomplicated falciparum malaria. Methods Open-label clinical trial comparing CPG−DDS alone or with artesunate 4, 2, or 1 mg/kg at medical centers in Blantyre, Malawi and Farafenni, The Gambia. The trial was conducted between June 2002 and February 2005, including 116 adults (median age 27 years) and 107 children (median age 38 months) with acute uncomplicated Plasmodium falciparum malaria. Subjects were randomized into 4 groups to receive CPG–DDS alone or plus 4, 2 or 1 mg/kg of artesunate once daily for 3 days. Assessments took place on Days 0−3 in hospital and follow-up on Days 7 and 14 as out-patients. Efficacy was evaluated in the Day 3 per-protocol (PP) population using mean time to reduce baseline parasitemia by 90% (PC90). A number of secondary outcomes were also included. Appropriate artesunate dose was determined using a pre-defined decision matrix based on primary and secondary outcomes. Treatment emergent adverse events were recorded from clinical assessments and blood parameters. Safety was evaluated in the intent to treat (ITT) population. Results In the Day 3 PP population for the adult group (N = 85), mean time to PC90 was 19.1 h in the CPG−DDS group, significantly longer than for the +artesunate 1 mg/kg (12.5 h; treatment difference −6.6 h [95%CI −11.8, −1.5]), 2 mg/kg (10.7 h; −8.4 h [95%CI −13.6, −3.2]) and 4 mg/kg (10.3 h; −8.7 h [95%CI −14.1, −3.2]) groups. For children in the Day 3 PP population (N = 92), mean time to PC90 was 21.1 h in the CPG−DDS group, similar to the +artesunate 1 mg/kg group (17.7 h; −3.3 h [95%CI −8.6, 2.0]), though the +artesunate 2 mg/kg and 4 mg/kg groups had significantly shorter mean times to PC90 versus CPG−DDS; 14.4 h (treatment difference −6.4 h [95%CI −11.7, −1.0]) and 12.8 h (−7.4 h [95%CI −12.9, −1.8]), respectively. An analysis of mean time to PC90 for the Day 14 PP and ITT populations was consistent with the primary analysis. Treatment emergent, drug-related adverse events were experienced in 35.3% (41/116) of adults and 70.1% (75/107) of children; mostly hematological and gastroenterological. The nature and incidence of adverse events was similar between the groups. No dose-related changes in laboratory parameters were observed. Nine serious adverse events due to any cause occurred in five subjects including two cases of hemolysis believed to be associated with drug treatment (one adult, one child). One adult died of anaphylactic shock, not associated with investigational therapy. Conclusions CPG–DDS plus artesunate demonstrated advantages over CPG–DDS alone for the primary efficacy endpoint (mean time to PC90) except in children for the 1 mg/kg artesunate dose. Based on a pre-defined decision matrix, the primary endpoint in the child group supported an artesunate dose of 4 mg/kg. Secondary endpoints also supported a 4 mg/kg artesunate dose to take forward into the remainder of the development program. Trial Registration ClinicalTrials.gov NCT00519467
Journal of Visualized Experiments | 2014
Andrea Collins; Jamie Rylance; Daniel G. Wootton; Angela D. Wright; Adam K. A. Wright; Duncan G. Fullerton; Stephen B. Gordon
We describe a research technique for fiberoptic bronchoscopy with bronchoalveolar lavage (BAL) using manual hand held suction in order to remove nonadherent cells and lung lining fluid from the mucosal surface. In research environments, BAL allows sampling of innate (lung macrophage), cellular (B- and T- cells), and humoral (immunoglobulin) responses within the lung. BAL is internationally accepted for research purposes and since 1999 the technique has been performed in > 1,000 subjects in the UK and Malawi by our group. Our technique uses gentle hand-held suction of instilled fluid; this is designed to maximize BAL volume returned and apply minimum shear force on ciliated epithelia in order to preserve the structure and function of cells within the BAL fluid and to preserve viability to facilitate the growth of cells in ex vivo culture. The research technique therefore uses a larger volume instillate (typically in the order of 200 ml) and employs manual suction to reduce cell damage. Patients are given local anesthetic, offered conscious sedation (midazolam), and tolerate the procedure well with minimal side effects. Verbal and written subject information improves tolerance and written informed consent is mandatory. Safety of the subject is paramount. Subjects are carefully selected using clear inclusion and exclusion criteria. This protocol includes a description of the potential risks, and the steps taken to mitigate them, a list of contraindications, pre- and post-procedure checks, as well as precise bronchoscopy and laboratory techniques.
Thorax | 2016
Daniel G. Wootton; Peter J. Diggle; Joanne Court; Odiri Eneje; Lynne Keogan; Laura Macfarlane; Sarah Wilks; Mark Woodhead; Stephen B. Gordon
Background Efferocytosis (the phagocytosis of apoptotic self cells) is a key mechanism in the resolution of inflammatory processes such as community-acquired pneumonia (CAP). Efferocytosis therefore represents a modifiable target for therapy aimed at enhancing intrinsic recovery mechanisms. It is currently not known which patients recovering from CAP would mostly benefit from a strategy aimed at enhancing efferocytosis. Methods We recruited a cohort of patients with CAP admitted to a hospital in Liverpool. One month into recovery, subjects were invited for research bronchoscopy and bronchoalveolar lavage. An ex vivo efferocytosis assay was performed by challenging alveolar macrophages with autologous, apoptotic neutrophils. The percentage of alveolar macrophages that had undergone efferocytosis was determined by flow cytometry. We conducted a multivariable regression using a linear mixed effects model to determine which clinical parameters were most closely associated with efferocytosis. Results We observed high rates of comorbidity among this CAP cohort. Efferocytosis was measured in 22 subjects. We assessed multiple combinations of clinical parameters for association with efferocytosis and found the best-fitting model included an interaction between smoking status and prior statin use—smoking being associated with decreased efferocytosis and statin use with increased efferocytosis. These effects were modified by an association between efferocytosis and body mass index (BMI), such that as BMI increased so did efferocytosis. Conclusions This is the first study to measure efferocytosis in patients recovering from CAP. The results suggest that smokers with low BMI have impaired efferocytosis and may benefit from a statin to boost recovery.
BMC Pulmonary Medicine | 2014
Andrea Collins; Odiri Eneje; Carole A. Hancock; Daniel G. Wootton; Stephen B. Gordon
AbstractBackgroundMany patients with pneumonia and lower respiratory tract infection that could be treated as outpatients according to their clinical severity score, are in fact admitted to hospital. We investigated whether, with medical and social input, these patients could be discharged early and treated at home. Objectives: (1) To assess the feasibility of providing an early supported discharge scheme for patients with pneumonia and lower respiratory tract infection (2) To assess the patient acceptability of a study comprising of randomisation to standard hospital care or early supported discharge scheme.MethodsDesign: Randomised controlled trial. Setting: Liverpool, UK. Two University Teaching hospitals; one city-centre, 1 suburban in Liverpool, a city with high deprivation scores and unemployment rates. Participants: 200 patients screened: 14 community-dwelling patients requiring an acute hospital stay for pneumonia or lower respiratory tract infection were recruited. Intervention: Early supported discharge scheme to provide specialist respiratory care in a patient’s own home as a substitute to acute hospital care. Main outcome measures: Primary - patient acceptability. Secondary – safety/mortality, length of hospital stay, readmission, patient/carer (or next of kin) satisfaction, functional status and symptom improvement.Results42 of the 200 patients screened were eligible for early supported discharge; 10 were only identified at the point of discharge, 18 declined participation and 14 were randomised to either early supported discharge or standard hospital care. The total hospital length of hospital stay was 8.33 (1–31) days in standard hospital care and 3.4 (1–7) days in the early supported discharge scheme arm. In the early supported discharge scheme arm patient carers reported higher satisfaction with care and there were less readmissions and hospital-acquired infections. Limitations: A small study in a single city. This was a feasibility study and therefore not intended to compare outcome data.ConclusionsAn early supported discharge scheme for patients with pneumonia and lower respiratory tract infection was feasible. Larger numbers of patients would be eligible if future work included patients with dementia and those residing in care homes.Trial registrationISRCTN25542492.
European Respiratory Journal | 2017
Daniel G. Wootton; Laura Dickinson; Henry Pertinez; Joanne Court; Odiri Eneje; Lynne Keogan; Laura Macfarlane; Sarah Wilks; Jane Gallagher; Mark Woodhead; Stephen B. Gordon; Peter J. Diggle
Our aims were to address three fundamental questions relating to the symptoms of community-acquired pneumonia (CAP): Do patients completely recover from pneumonia symptoms? How long does this recovery take? Which factors influence symptomatic recovery? We prospectively recruited patients at two hospitals in Liverpool, UK, into a longitudinal, observational cohort study and modelled symptom recovery from CAP. We excluded patients with cancer, immunosuppression or advanced dementia, and those who were intubated or palliated from admission. We derived a statistical model to describe symptom patterns. We recruited 169 (52% male) adults. Multivariable analysis demonstrated that the time taken to recover to baseline was determined by the initial severity of symptoms. Severity of symptoms was associated with comorbidity and was inversely related to age. The pattern of symptom recovery was exponential and most patients’ symptoms returned to baseline by 10 days. These results will inform the advice given to patients regarding the resolution of their symptoms. The recovery model described here will facilitate the use of symptom recovery as an outcome measure in future clinical trials. Severity of CAP symptoms is inversely related to age and resolution to baseline symptoms takes on average 10 days http://ow.ly/dV0h30befE3
European Respiratory Journal | 2012
Andrea Collins; Sarah Wilks; Daniel G. Wootton; Stephen B. Gordon
To the Editors: We agree with Choudhury et al. [1] that more patients (18–20%) could be managed at home by family practitioners with the application of current guidelines, but we would like to comment that a greater number of patients (approximately 60%) could be managed at home with additional supported home-based care. As described by the authors, factors other than disease severity often prompt hospital admission. These include substance abuse, inability to cope alone at home, inability to take oral antibiotics, comorbidities and homelessness [2, 3]. The case for outpatient care based on severity markers is clear, but there is an urgent need for …
Pneumonia | 2018
Biswajit Chakrabarti; Daniel G. Wootton; Steven Lane; Elizabeth Kanwar; Joseph Somers; Jacyln Proctor; Nancy Prospero; Mark Woodhead
BackgroundThe majority of patients with community acquired-pneumonia (CAP) are treated in primary care and the mortality in this group is very low. However, a small but significant proportion of patients who begin treatment in the community subsequently require admission due to symptomatic deterioration. This study compared patients who received community antibiotics prior to admission to those who had not, and looked for associations with clinical outcomes.MethodsThis study analysed the Advancing Quality (AQ) Pneumonia database of patients admitted with CAP to 9 acute hospitals in the northwest of England over a 12-month period.ResultsThere were 6348 subjects (mean age 72 [SD 16] years; gender ratio 1:1) admitted with CAP, of whom 17% had been pre-treated with antibiotics. The in-hospital mortality was 18.6% for the pre-treatment group compared to 13.2% in the “antibiotic naïve” group (p < 0.001). On multivariate analysis, age, male gender and antibiotic pre-treatment were predictors of in-hospital mortality along with a history of cerebrovascular accident, congestive cardiac failure, dementia, renal disease and cancer. After adjustment for CURB-65 score, age, co-morbidities and pre-treatment with antibiotics remained as independent risk factors for in-hospital mortality (OR 1.43, 95% CI 1.19–1.71).ConclusionCAP patients admitted to hospital were more likely to die during admission if they had received antibiotics for the same illness pre-admission. Future studies should endeavor to determine the mechanisms underlying this association, such as microbiological factors and the role of comorbidities. Patients hospitalized with CAP despite prior antibiotic treatment in the community require close monitoring.
Journal of Visualized Experiments | 2018
Kyle Taruc; Charles Yin; Daniel G. Wootton; Bryan Heit
Studying the regulation of efferocytosis requires methods that are able to accurately quantify the uptake of apoptotic cells and to probe the signaling and cellular processes that control efferocytosis. This quantification can be difficult to perform as apoptotic cells are often efferocytosed piecemeal, thus necessitating methods which can accurately delineate between the efferocytosed portion of an apoptotic target versus residual unengulfed cellular fragments. The approach outlined herein utilizes dual-labeling approaches to accurately quantify the dynamics of efferocytosis and efferocytic capacity of efferocytes such as macrophages. The cytosol of the apoptotic cell is labeled with a cell-tracking dye to enable monitoring of all apoptotic cell-derived materials, while surface biotinylation of the apoptotic cell allows for differentiation between internalized and non-internalized apoptotic cell fractions. The efferocytic capacity of efferocytes is determined by taking fluorescent images of live or fixed cells and quantifying the amount of bound versus internalized targets, as differentiated by streptavidin staining. This approach offers several advantages over methods such as flow cytometry, namely the accurate delineation of non-efferocytosed versus efferocytosed apoptotic cell fractions, the ability to measure efferocytic dynamics by live-cell microscopy, and the capacity to perform studies of cellular signaling in cells expressing fluorescently-labeled transgenes. Combined, the methods outlined in this protocol serve as the basis for a flexible experimental approach that can be used to accurately quantify efferocytic activity and interrogate cellular signaling pathways active during efferocytosis.
Collaboration
Dive into the Daniel G. Wootton's collaboration.
Central Manchester University Hospitals NHS Foundation Trust
View shared research outputs