Daniel Gapes
Scion
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Gapes.
Bioresource Technology | 2014
Kevin Hii; Saeid Baroutian; Raj Parthasarathy; Daniel Gapes; Nicky Eshtiaghi
With rapid world population growth and strict environmental regulations, increasingly large volumes of sludge are being produced in todays wastewater treatment plants (WWTP) with limited disposal routes. Sludge treatment has become an essential process in WWTP, representing 50% of operational costs. Sludge destruction and resource recovery technologies are therefore of great ongoing interest. Hydrothermal processing uses unique characteristics of water at elevated temperatures and pressures to deconstruct organic and inorganic components of sludge. It can be broadly categorized into wet oxidation (oxidative) and thermal hydrolysis (non-oxidative). While wet air oxidation (WAO) can be used for the final sludge destruction and also potentially producing industrially useful by-products such as acetic acid, thermal hydrolysis (TH) is mainly used as a pre-treatment method to improve the efficiency of anaerobic digestion. This paper reviews current hydrothermal technologies, roles of wet air oxidation and thermal hydrolysis in sludge treatment, and challenges faced by these technologies.
Bioresource Technology | 2013
Saeid Baroutian; Nicky Eshtiaghi; Daniel Gapes
The main objective of this study was to investigate the rheology of mixed primary and secondary sludge and its dependency on solid content and temperature. Results of this study showed that the temperature and solid concentration are critical parameters affecting the mixed sludge rheology. It was found that the yield stress increases with an increase in the sludge solid content and decreases with increasing temperature. The rheological behaviour of sludges was modelled using the Herschel-Bulkley model. The results of the model showed a good agreement with experimental data. Depending on the total solid content, the average error varied between 3.25% and 6.22%.
Bioresource Technology | 2011
P.J. Strong; Ben McDonald; Daniel Gapes
In this study the comparative destruction of municipal biosolids using thermal hydrolysis (140 or 165°C) and wet oxidation (220°C) was followed by biological degradation via mesophilic anaerobic digestion (36°C). Wet oxidation (WO) destroyed more than 93% of the VSS, while thermal hydrolysis (TH) at 140 and 165°C destroyed 9% and 22%, respectively. Combined TH and anaerobic digestion resulted in approximately 50% VSS destruction. The ultimate methane potential of the combined fractions from the thermal hydrolysis at 140 and 165°C improved by 12-13% relative to the untreated control sample. Methane production from the WO material was 53% of the control yield and wholly attributable to soluble organic carbon in the liquid fraction, indicating that the WO destroyed all putrescible carbon from the solids fraction. Point sampling during the BMP assay revealed that methanogenic development, not solids hydrolysis, was the kinetic barrier during anaerobic digestion in this study.
Bioresource Technology | 2011
P.J. Strong; Ben McDonald; Daniel Gapes
This study compared the effect of four pure carbon supplements on biological denitrification to a liquor derived as a by-product from the wet oxidation (WO) of waste activated sludge. Sequencing batch reactors were used to acclimate sludge biomass, which was used in batch assays. Acetate, WO liquor and ethanol-supplementation generated the fastest denitrification rates. Acetate and WO liquor were efficiently utilised by all acclimated biomass types, while poor rates were achieved with methanol and formate. When comparing an inoculum from an ethanol-supplemented and non-supplemented wastewater treatment plant (WWTP), the ethanol-acclimated sludge obtained superior denitrification rates when supplemented with ethanol. Similarly high nitrate removal rates were achieved with both sludge types with acetate and WO liquor supplementation, indicating that WO liquors could achieve excellent rates of nitrate removal. The performance of the WO liquor was attributed to the variety of organic carbon substrates (particularly acetic acid) present within the liquor.
Water Research | 2003
Daniel Gapes; Steven Pratt; Zhiguo Yuan; Jurg Keller
The two steps of nitrification, namely the oxidation of ammonia to nitrite and nitrite to nitrate, often need to be considered separately in process studies. For a detailed examination, it is desirable to monitor the two-step sequence using online measurements. In this paper, the use of online titrimetric and off-gas analysis (TOGA) methods for the examination of the process is presented. Using the known reaction stoichiometry, combination of the measured signals (rates of hydrogen ion production, oxygen uptake and carbon dioxide transfer) allows the determination of the three key process rates, namely the ammonia consumption rate, the nitrite accumulation rate and the nitrate production rate. Individual reaction rates determined with the TOGA sensor under a number of operation conditions are presented. The rates calculated directly from the measured signals are compared with those obtained from offline liquid sample analysis. Statistical analysis confirms that the results from the two approaches match well. This result could not have been guaranteed using alternative online methods. As a case study, the influences of pH and dissolved oxygen (DO) on nitrite accumulation are tested using the proposed method. It is shown that nitrite accumulation decreased with increasing DO and pH. Possible reasons for these observations are discussed.
Bioresource Technology | 2013
Saeid Baroutian; Murray Robinson; Anne-Marie Smit; Suren Wijeyekoon; Daniel Gapes
In order to remove wood extractive compounds from pulp mill sludge and thereby enhancing anaerobic digestibility, samples were subjected to either oxidative hydrothermal treatment (wet oxidation) or non-oxidative hydrothermal treatment (thermal hydrolysis). Treatments were carried out at 220 °C with initial pressure of 20 bar. More than 90% destruction of extractive compounds was observed after 20 min of wet oxidation. Wet oxidation eliminated 95.7% of phenolics, 98.6% fatty acids, 99.8% resin acids and 100% of phytosterols in 120 min. Acetic acid concentration increased by approximately 2 g/l after 120 min of wet oxidation. This has potential for rendering sludge more amenable to anaerobic digestion. In contrast thermal hydrolysis was found to be ineffective in degrading extractive compounds. Wet oxidation is considered to be an effective process for removal of recalcitrant and inhibitive compounds through hydrothermal pre-treatment of pulp mill sludge.
Bioresource Technology | 2013
Saeid Baroutian; Anne-Marie Smit; Daniel Gapes
Individual and interactive effects of process variables on the degradation of fermented municipal sludge were examined during wet oxidation. The process was carried out at 220-240°C using 1:1-2:1 oxygen to biomass ratio and 300-500 rpm stirring speed. Response surface methodology coupled with a faced-centred central composite design was used to evaluate the effect of these variables on total suspended solids, volatile suspended solids and total chemical oxygen demand. Multivariate analysis was conducted for the initial and near completion stages of reaction: 5 and 60 min treatments, respectively. Temperature had the most significant effect on degradation rate throughout. During the initial stage the effect of mixing intensity was less significant than that of oxygen ratio. Mixing intensity did not influence degradation rate at the later stage in the process. During the near completion stage, the interaction of temperature and oxygen ratio had significant effect on sludge degradation.
Waste Management | 2012
P.J. Strong; Daniel Gapes
In this study four diverse solid waste substrates (coal, Kraft pulp solids, chicken feathers and chicken processing waste) were thermally pre-treated (70, 140 and 200 °C), under an inert (nitrogen) or oxidative (oxygen) atmosphere, and then anaerobically digested. Membrane inlet mass spectrometry during the thermal and thermo-chemical reactions was successfully used to establish oxygen and carbon dioxide gas fluxes and product formation (acetic acid). There was significant solids hydrolysis pre-treatment at 200 °C under an oxidative atmosphere, as indicated by a decrease in the volatile suspended solids and an increase in dissolved organic carbon. Greater concentrations of volatile fatty acids were produced under oxidative conditions at higher temperatures. The methane yield more than tripled for feathers after pre-treatment at 140 °C (under both atmospheres), but decreased after oxidative pre-treatment at 200 °C, due to the destruction of available carbon by the thermo-chemical reaction. Methane yield more than doubled for the Kraft pulp solids with the 200 °C pre-treatment under oxidative conditions. This study illustrated the power of wet oxidation for solids destruction and its potential to improve methane yields generated during anaerobic digestion.
Bioresource Technology | 2016
Saeid Baroutian; Daniel Gapes; Ajit K. Sarmah; Mohammed M. Farid; Brent R. Young
The current study investigated the formation of organic acids and alcohols as major intermediate products of wet oxidation of municipal sludge. Municipal sludge was subjected to 60-min wet oxidation at temperatures ranging from 220 to 240°C, with 20bar oxygen partial pressure. Acetic acid was the main intermediate compound produced in this study, followed by propionic, n-butyric, iso-butyric and pentanoic acids and methanol. It was found that the process severity has a significant influence on the formation and degradation of these intermediate products.
Water Research | 2015
Arrian Prince-Pike; David I. Wilson; Saeid Baroutian; John Andrews; Daniel Gapes
Wet oxidation is a successful process for the treatment of municipal sludge. In addition, the resulting effluent from wet oxidation is a useful carbon source for subsequent biological nutrient removal processes in wastewater treatment. Owing to limitations with current kinetic models, this study produced a kinetic model which predicts the concentrations of key intermediate components during wet oxidation. The model was regressed from lab-scale experiments and then subsequently validated using data from a wet oxidation pilot plant. The model was shown to be accurate in predicting the concentrations of each component, and produced good results when applied to a plant 500 times larger in size. A statistical study was undertaken to investigate the validity of the regressed model parameters. Finally the usefulness of the model was demonstrated by suggesting optimum operating conditions such that volatile fatty acids were maximised.