Dániel Gerbner
Alfréd Rényi Institute of Mathematics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dániel Gerbner.
Combinatorica | 2014
József Balogh; János Barát; Dániel Gerbner; András Gyárfás; Gábor N. Sárközy
AbstractWe present results on partitioning the vertices of 2-edge-colored graphs into monochromatic paths and cycles. We prove asymptotically the two-color case of a conjecture of Sárközy: the vertex set of every 2-edge-colored graph can be partitioned into at most 2α(G) monochromatic cycles, where α(G) denotes the independence number of G. Another direction, emerged recently from a conjecture of Schelp, is to consider colorings of graphs with given minimum degree. We prove that apart from o(|V (G)|) vertices, the vertex set of any 2-edge-colored graph G with minimum degree at least
SIAM Journal on Discrete Mathematics | 2017
Dániel Gerbner; Cory Palmer
Graphs and Combinatorics | 2013
Dániel Gerbner; Balázs Keszegh; Nathan Lemons; Cory Palmer; Dömötör Pálvölgyi; Balázs Patkós
tfrac{{(1 + varepsilon )3|V(G)|}}n{4}
Discrete Applied Mathematics | 2013
Dániel Gerbner; Gyula O. H. Katona; Dömötör Pálvölgyi; Balázs Patkós
SIAM Journal on Discrete Mathematics | 2012
Dániel Gerbner; Nathan Lemons; Cory Palmer; Balázs Patkós; Vajk Szécsi
can be covered by the vertices of two vertex disjoint monochromatic cycles of distinct colors. Finally, under the assumption that
European Journal of Combinatorics | 2015
Zoltán Füredi; Dániel Gerbner; Máté Vizer
Electronic Notes in Discrete Mathematics | 2015
Máté Vizer; Dániel Gerbner; Balázs Keszegh; Dömötör Pálvölgyi; Balázs Patkós; Gábor Wiener
bar G
arXiv: Combinatorics | 2013
Dániel Gerbner; Balázs Keszegh; Dömötör Pálvölgyi; Gábor Wiener
Combinatorica | 2013
Dániel Gerbner
does not contain a fixed bipartite graph H, we show that in every 2-edge-coloring of G, |V (G)| − c(H) vertices can be covered by two vertex disjoint paths of different colors, where c(H) is a constant depending only on H. In particular, we prove that c(C4)=1, which is best possible.
Graphs and Combinatorics | 2007
Attila Bernáth; Dániel Gerbner
Let