Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Gioeli is active.

Publication


Featured researches published by Daniel Gioeli.


Journal of Biological Chemistry | 2002

Androgen Receptor Phosphorylation REGULATION AND IDENTIFICATION OF THE PHOSPHORYLATION SITES

Daniel Gioeli; Scott B. Ficarro; Jesse J. Kwiek; David S. Aaronson; Mathew Hancock; Andrew D. Catling; Forest M. White; Robert E. Christian; Robert E. Settlage; Jeffrey Shabanowitz; Donald F. Hunt; Michael J. Weber

Activation of signal transduction kinase cascades has been shown to alter androgen receptor (AR) activity. Although it has been suggested that changes in AR phosphorylation might be directly responsible, the basal and regulated phosphorylations of the AR have not been fully determined. We have identified the major sites of AR phosphorylation on ARs expressed in COS-1 cells using a combination of peptide mapping, Edman degradation, and mass spectrometry. We describe the identification of seven AR phosphorylation sites, show that the phosphopeptides seen with exogenously expressed ARs are highly similar to those seen with endogenous ARs in LNCaP cells and show that specific agonists differentially regulate the phosphorylation state of endogenous ARs in LNCaP prostate cancer cells. Treatment of LNCaP cells with the synthetic androgen, R1881, elevates phosphorylation of serines 16, 81, 256, 308, 424, and 650. Ser-94 appears constitutively phosphorylated. Forskolin, epidermal growth factor, and phorbol 12-myristate 13-acetate increase the phosphorylation of Ser-650. The kinetics of phosphorylation of most sites in response to hormone or forskolin is temporally delayed, reaching a maximum at 2 h post-stimulation. The exception is Ser-81, which continues to display increasing phosphorylation at 6 h. These data provide a basis for analyzing mechanisms of cross-talk between growth factor signaling and androgen in prostate development, physiology, and cancer.


PLOS ONE | 2010

Matrix Rigidity Regulates Cancer Cell Growth and Cellular Phenotype

Robert W. Tilghman; Catharine R. Cowan; Justin D. Mih; Yulia Koryakina; Daniel Gioeli; Jill K. Slack-Davis; Brett R. Blackman; Daniel J. Tschumperlin; J. Thomas Parsons

Background The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness) of the microenvironment and how this response varies among cancer cell lines. Methodology/Principal Findings In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: “rigidity dependent” (those which show an increase in cell growth as extracellular rigidity is increased), and “rigidity independent” (those which grow equally on both soft and stiff substrates). Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. Conclusions/Significance These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.


Journal of Cellular Biochemistry | 2004

Ras signaling in prostate cancer progression

Michael J. Weber; Daniel Gioeli

When prostate cancer is first detected it generally is dependent on the presence of androgens for growth, and responds to androgen ablation therapies. However, the disease often recurs in a disseminated and apparently androgen independent (AI) form, and in this state is almost invariably fatal. Considerable evidence indicates that the Androgen receptor (AR) continues to be required even in androgen independent (AI) disease. Thus, a key to understanding hormone independent prostate cancer is to determine the mechanism(s) by which the AR can function even in the absence of physiologic levels of androgen. In this article, we argue that growth factors and receptors that utilize Ras family members drive prostate cancer progression to a state of androgen hypersensitivity; and that post‐translational modifications (e.g., phosphorylations) of transcriptional cofactors might be responsible for modulating the function of the AR so that it is active even at low concentrations of androgen.


Clinical Science | 2005

Signal transduction in prostate cancer progression

Daniel Gioeli

Prostate cancer is the most frequently diagnosed cancer among men and the second leading cause of male cancer deaths in the United States. When prostate cancer initially presents in the clinic, the tumour is dependent on androgen for growth and, therefore, responsive to the surgical or pharmacological ablation of circulating androgens. However, there is a high rate of treatment failure because the disease often recurs as androgen-independent metastases. Surprisingly, this late-stage androgen-independent prostate cancer almost always retains expression of the AR (androgen receptor), despite the near absence of circulating androgens. Although late-stage prostate cancer is androgen-independent, the AR still seems to play a role in cancer cell growth at this stage of disease. Therefore a key to understanding hormone-independent prostate cancer is to determine the mechanism(s) by which the AR can function even in the absence of physiological levels of circulating androgen. This review will focus on the role of growth factor signalling in prostate cancer progression to androgen independence and thus outline potential molecular areas of intervention to treat prostate cancer progression.


Molecular and Cellular Biology | 2010

FKBP51 Promotes Assembly of the Hsp90 Chaperone Complex and Regulates Androgen Receptor Signaling in Prostate Cancer Cells

Li Ni; Chun-Song Yang; Daniel Gioeli; Henry F. Frierson; David O. Toft; Bryce M. Paschal

ABSTRACT Prostate cancer progression to the androgen-independent (AI) state involves acquisition of pathways that allow tumor growth under low-androgen conditions. We hypothesized that expression of molecular chaperones that modulate androgen binding to AR might be altered in prostate cancer and contribute to progression to the AI state. Here, we report that the Hsp90 cochaperone FKBP51 is upregulated in LAPC-4 AI tumors grown in castrated mice and describe a molecular mechanism by which FKBP51 regulates AR activity. Using recombinant proteins, we show that FKBP51 stimulates recruitment of the cochaperone p23 to the ATP-bound form of Hsp90, forming an FKBP51-Hsp90-p23 superchaperone complex. In cells, FKBP51 expression promotes superchaperone complex association with AR and increases the number of AR molecules that undergo androgen binding. FKBP51 stimulates androgen-dependent transcription and cell growth, and FKBP51 is part of a positive feedback loop that is regulated by AR and androgen. Finally, depleting FKBP51 levels by short hairpin RNA reduces the transcript levels of genes regulated by AR and androgen. Because the superchaperone complex plays a critical role in determining the ligand-binding competence and transcription function of AR, it provides an attractive target for inhibiting AR activity in prostate cancer cells.


Molecular Endocrinology | 2010

CDK9 regulates AR promoter selectivity and cell growth through serine 81 phosphorylation.

Vicki L. Gordon; Shriti Bhadel; Winfried Wunderlich; JoAnn Zhang; Scott B. Ficarro; Sahana Mollah; Jeffrey Shabanowitz; Donald F. Hunt; Ioannis Xenarios; William C. Hahn; Mark R. Conaway; Michael Carey; Daniel Gioeli

Previously we determined that S81 is the highest stoichiometric phosphorylation on the androgen receptor (AR) in response to hormone. To explore the role of this phosphorylation on growth, we stably expressed wild-type and S81A mutant AR in LHS and LAPC4 cells. The cells with increased wild-type AR expression grow faster compared with parental cells and S81A mutant-expressing cells, indicating that loss of S81 phosphorylation limits cell growth. To explore how S81 regulates cell growth, we tested whether S81 phosphorylation regulates AR transcriptional activity. LHS cells stably expressing wild-type and S81A mutant AR showed differences in the regulation of endogenous AR target genes, suggesting that S81 phosphorylation regulates promoter selectivity. We next sought to identify the S81 kinase using ion trap mass spectrometry to analyze AR-associated proteins in immunoprecipitates from cells. We observed cyclin-dependent kinase (CDK)9 association with the AR. CDK9 phosphorylates the AR on S81 in vitro. Phosphorylation is specific to S81 because CDK9 did not phosphorylate the AR on other serine phosphorylation sites. Overexpression of CDK9 with its cognate cyclin, Cyclin T, increased S81 phosphorylation levels in cells. Small interfering RNA knockdown of CDK9 protein levels decreased hormone-induced S81 phosphorylation. Additionally, treatment of LNCaP cells with the CDK9 inhibitors, 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole and Flavopiridol, reduced S81 phosphorylation further, suggesting that CDK9 regulates S81 phosphorylation. Pharmacological inhibition of CDK9 also resulted in decreased AR transcription in LNCaP cells. Collectively these results suggest that CDK9 phosphorylation of AR S81 is an important step in regulating AR transcriptional activity and prostate cancer cell growth.


Molecular and Cellular Endocrinology | 2012

Post-translational modification of the androgen receptor.

Daniel Gioeli; Bryce M. Paschal

Regulation of the androgen receptor (AR) by its cognate ligand is well established, but how post-translational modification modulates AR activity is only emerging. The AR is subject to modification by phosphorylation, acetylation, methylation, SUMOylation, and ubiquitination. As several of the enzymes that modify the AR are altered in prostate cancer, defining the context and physiological effects of these modifications could provide insight into mechanisms that underpin human disease. Here, we review how post-translational modification contributes to AR function as a transcription factor with particular emphasis on phosphorylation and dephosphorylation mechanisms.


BMC Cell Biology | 2010

Karyopherin α7 (KPNA7), a divergent member of the importin α family of nuclear import receptors

Joshua B. Kelley; Ashley M Talley; Adam Spencer; Daniel Gioeli; Bryce M. Paschal

BackgroundClassical nuclear localization signal (NLS) dependent nuclear import is carried out by a heterodimer of importin α and importin β. NLS cargo is recognized by importin α, which is bound by importin β. Importin β mediates translocation of the complex through the central channel of the nuclear pore, and upon reaching the nucleus, RanGTP binding to importin β triggers disassembly of the complex. To date, six importin α family members, encoded by separate genes, have been described in humans.ResultsWe sequenced and characterized a seventh member of the importin α family of transport factors, karyopherin α 7 (KPNA7), which is most closely related to KPNA2. The domain of KPNA7 that binds Importin β (IBB) is divergent, and shows stronger binding to importin β than the IBB domains from of other importin α family members. With regard to NLS recognition, KPNA7 binds to the retinoblastoma (RB) NLS to a similar degree as KPNA2, but it fails to bind the SV40-NLS and the human nucleoplasmin (NPM) NLS. KPNA7 shows a predominantly nuclear distribution under steady state conditions, which contrasts with KPNA2 which is primarily cytoplasmic.ConclusionKPNA7 is a novel importin α family member in humans that belongs to the importin α2 subfamily. KPNA7 shows different subcellular localization and NLS binding characteristics compared to other members of the importin α family. These properties suggest that KPNA7 could be specialized for interactions with select NLS-containing proteins, potentially impacting developmental regulation.


Molecular Endocrinology | 2009

SUMO-Specific Protease 1 (SENP1) Reverses the Hormone-Augmented SUMOylation of Androgen Receptor and Modulates Gene Responses in Prostate Cancer Cells

Sanna Kaikkonen; Tiina Jääskeläinen; Ulla Karvonen; Miia M. Rytinki; Harri Makkonen; Daniel Gioeli; Bryce M. Paschal; Jorma J. Palvimo

The acceptor sites for small ubiquitin-like modifier (SUMO) are conserved in the N-terminal domains of several nuclear receptors. Here, we show that androgens induce rapid and dynamic conjugation of SUMO-1 to androgen receptor (AR). Nuclear import of AR is not sufficient for SUMOylation, because constitutively nuclear apo-ARs or antagonist-bound ARs are only very weakly modified by SUMO-1 in comparison with agonist-bound ARs. Of the SUMO-specific proteases (SENP)-1, -2, -3, -5, and -6, only SENP1 and SENP2 are efficient in cleaving AR-SUMO-1 conjugates in intact cells and in vitro. Both SENP1 and -2 are nuclear and found at sites proximal to AR. Their expression promotes AR-dependent transcription, but in a promoter-selective fashion. SENP1 and -2 stimulated the activity of holo-AR on compound androgen response element-containing promoters. The effects of SENP1 and -2 on AR-dependent transcription were dependent on catalytic activity and required intact SUMO acceptor sites in AR, indicating that their coactivating effects are mainly due to their direct isopeptidase activity on holo-AR. In prostate cancer cells, ectopic expression of SENP1, but not that of SENP2, increased the transcription activity of endogenous AR. Silencing of SENP1 attenuated the expression of several AR target genes and blunted androgen-stimulated growth of LNCaP cells. Our results indicate that SENP1 reverses the ligand-induced SUMOylation of AR and helps fine tune the cellular responses to androgens in a target promoter-selective manner.


Molecular and Cellular Biology | 2005

Simian Virus 40 Small t Antigen Mediates Conformation-Dependent Transfer of Protein Phosphatase 2A onto the Androgen Receptor

Chun-Song Yang; Michael J. Vitto; Scott A. Busby; Benjamin A. Garcia; Cristina T. Kesler; Daniel Gioeli; Jeffrey Shabanowitz; Donald F. Hunt; Kathleen Rundell; David L. Brautigan; Bryce M. Paschal

ABSTRACT The tumor antigens simian virus 40 small t antigen (ST) and polyomavirus small and medium T antigens mediate cell transformation in part by binding to the structural A subunit of protein phosphatase 2A (PP2A). The replacement of B subunits by tumor antigens inhibits PP2A activity and prolongs phosphorylation-dependent signaling. Here we show that ST mediates PP2A A/C heterodimer transfer onto the ligand-activated androgen receptor (AR). Transfer by ST is strictly dependent on the agonist-activated conformation of AR, occurs within minutes of the addition of androgen to cells, and can occur in either the cytoplasm or the nucleus. The binding of ST changes the conformation of the A subunit, and ST rapidly dissociates from the complex upon PP2A A/C heterodimer binding to AR. PP2A is transferred onto the carboxyl-terminal half of AR, and the phosphatase activity is directed to five phosphoserines in the amino-terminal activation function region 1, with a corresponding reduction in transactivation. Thus, ST functions as a transfer factor to specify PP2A targeting in the cell and modulates the transcriptional activity of AR.

Collaboration


Dive into the Daniel Gioeli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huy Q. Ta

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark J. Jameson

University of Virginia Health System

View shared research outputs
Top Co-Authors

Avatar

Rolando E. Mendez

University of Virginia Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge