Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Gitler is active.

Publication


Featured researches published by Daniel Gitler.


The Journal of Neuroscience | 2004

Different presynaptic roles of synapsins at excitatory and inhibitory synapses.

Daniel Gitler; Yoshiko Takagishi; Jian Feng; Yong Ren; Ramona M. Rodriguiz; William C. Wetsel; Paul Greengard; George J Augustine

The functions of synapsins were examined by characterizing the phenotype of mice in which all three synapsin genes were knocked out. Although these triple knock-out mice were viable and had normal brain anatomy, they exhibited a number of behavioral defects. Synaptic transmission was altered in cultured neurons from the hippocampus of knock-out mice. At excitatory synapses, loss of synapsins did not affect basal transmission evoked by single stimuli but caused a threefold increase in the rate of synaptic depression during trains of stimuli. This suggests that synapsins regulate the reserve pool of synaptic vesicles. This possibility was examined further by measuring synaptic vesicle density in living neurons transfected with green fluorescent protein-tagged synaptobrevin 2, a marker of synaptic vesicles. The relative amount of fluorescent synaptobrevin was substantially lower at synapses of knock-out neurons than of wild-type neurons. Electron microscopy also revealed a parallel reduction in the number of vesicles in the reserve pool of vesicles >150 nm away from the active zone at excitatory synapses. Thus, synapsins are required for maintaining vesicles in the reserve pool at excitatory synapses. In contrast, basal transmission at inhibitory synapses was reduced by loss of synapsins, but the kinetics of synaptic depression were unaffected. In these terminals, there was a mild reduction in the total number of synaptic vesicles, but this was not restricted to the reserve pool of vesicles. Thus, synapsins maintain the reserve pool of glutamatergic vesicles but regulate the size of the readily releasable pool of GABAergic vesicles.


The Journal of Neuroscience | 2006

Cocaine Increases Dopamine Release by Mobilization of a Synapsin-Dependent Reserve Pool

B. Jill Venton; Andrew T. Seipel; Paul E. M. Phillips; William C. Wetsel; Daniel Gitler; Paul Greengard; George J Augustine; R. Mark Wightman

Cocaine primarily exerts its behavioral effects by enhancing dopaminergic neurotransmission, amplifying dopamine-encoded sensorimotor integration. The presumed mechanism for this effect is inhibition of the dopamine transporter, which blocks dopamine uptake and prolongs the duration of dopamine in the extracellular space. However, there is growing evidence that cocaine can also augment dopamine release. Here, we directly monitored the actions of cocaine on dopamine release by using electrochemical detection to measure extracellular dopamine in the striatum of anesthetized mice. Cocaine enhanced the levels of striatal dopamine produced by electrical stimulation of dopaminergic neurons. Even after pretreatment with α-methyl-p-tyrosine, which depletes the readily releasable pool of dopamine, cocaine was still capable of elevating dopamine levels. This suggests that cocaine enhances dopamine release by mobilizing a reserve pool of dopamine-containing synaptic vesicles. To test this hypothesis, we examined electrically evoked dopamine release in synapsin I/II/III triple knock-out mice, which have impaired synaptic vesicle reserve pools. Knock-out of synapsins greatly reduced the ability of cocaine to enhance dopamine release with long stimulus trains or after depletion of the newly synthesized pool. We therefore conclude that cocaine enhances dopamine release and does so by mobilizing a synapsin-dependent reserve pool of dopamine-containing synaptic vesicles. This capacity to enhance exocytotic release of dopamine may be important for the psychostimulant actions of cocaine.


The Journal of Neuroscience | 2004

Molecular Determinants of Synapsin Targeting to Presynaptic Terminals

Daniel Gitler; Yimei Xu; Hung-Teh Kao; Dayu Lin; Sangmi Lim; Jian Feng; Paul Greengard; George J Augustine

Although synapsins are abundant synaptic vesicle proteins that are widely used as markers of presynaptic terminals, the mechanisms that target synapsins to presynaptic terminals have not been elucidated. We have addressed this question by imaging the targeting of green fluorescent protein-tagged synapsins in cultured hippocampal neurons. Whereas all synapsin isoforms targeted robustly to presynaptic terminals in wild-type neurons, synapsin Ib scarcely targeted in neurons in which all synapsins were knocked-out. Coexpression of other synapsin isoforms significantly strengthened the targeting of synapsin Ib in knock-out neurons, indicating that heterodimerization is required for synapsin Ib to target. Truncation mutagenesis revealed that synapsin Ia targets via distributed binding sites that include domains B, C, and E. Although domain A was not necessary for targeting, its presence enhanced targeting. Domain D inhibited targeting, but this inhibition was overcome by domain E. Thus, multiple intermolecular and intramolecular interactions are required for synapsins to target to presynaptic terminals.


The Journal of Neuroscience | 2008

Synapsin IIa Controls the Reserve Pool of Glutamatergic Synaptic Vesicles

Daniel Gitler; Qing Cheng; Paul Greengard; George J Augustine

Synapsins regulate synaptic transmission by controlling the reserve pool of synaptic vesicles. Each of the three mammalian synapsin genes is subject to alternative splicing, yielding several isoforms whose roles are unknown. To investigate the function of these isoforms, we examined the synaptic effects of introducing each isoform into glutamatergic cultured hippocampal neurons from synapsin triple knock-out mice. Remarkably, we found that synapsin IIa was the only isoform that could rescue the synaptic depression phenotype of the triple knock-out mice; other isoforms examined, including the well-studied synapsin Ia isoform, had no significant effect on the kinetics of synaptic depression. The slowing of synaptic depression by synapsin IIa was quantitatively paralleled by an increase in the density of reserve pool synaptic vesicles, as measured either by fluorescent tagging of the vesicle protein synaptobrevin-2 or by staining with the styryl dye FM4–64 [N-(3-triethylammoniumpropyl)-4-(6-(4-diethylamino)phenyl)-hexatrienyl)pyridinium dibromide]. Our results provide further support for the hypothesis that synapsins define the kinetics of synaptic depression at glutamatergic synapses by controlling the size of the vesicular reserve pool and identify synapsin IIa as the isoform primarily responsible for this task.


The Journal of Neuroscience | 2012

Synapsin Selectively Controls the Mobility of Resting Pool Vesicles at Hippocampal Terminals

Ayelet Orenbuch; Lee Shalev; Vincenzo Marra; Isaac Sinai; Yotam Lavy; Joy Kahn; Jemima J. Burden; Kevin Staras; Daniel Gitler

Presynaptic terminals are specialized sites for information transmission where vesicles fuse with the plasma membrane and are locally recycled. Recent work has extended this classical view, with the observation that a subset of functional vesicles is dynamically shared between adjacent terminals by lateral axonal transport. Conceptually, such transport would be expected to disrupt vesicle retention around the active zone, yet terminals are characterized by a high-density vesicle cluster, suggesting that counteracting stabilizing mechanisms must operate against this tendency. The synapsins are a family of proteins that associate with synaptic vesicles and determine vesicle numbers at the terminal, but their specific function remains controversial. Here, using multiple quantitative fluorescence-based approaches and electron microscopy, we show that synapsin is instrumental for resisting vesicle dispersion and serves as a regulatory element for controlling lateral vesicle sharing between synapses. Deleting synapsin disrupts the organization of presynaptic vesicle clusters, making their boundaries hard to define. Concurrently, the fraction of vesicles amenable to transport is increased, and more vesicles are translocated to the axon. Importantly, in neurons from synapsin knock-out mice the resting and recycling pools are equally mobile. Synapsin, when present, specifically restricts the mobility of resting pool vesicles without affecting the division of vesicles between these pools. Specific expression of synapsin IIa, the sole isoform affecting synaptic depression, rescues the knock-out phenotype. Together, our results show that synapsin is pivotal for maintaining synaptic vesicle cluster integrity and that it contributes to the regulated sharing of vesicles between terminals.


Journal of Biological Chemistry | 2009

Molecular Basis for Zinc Transporter 1 Action as an Endogenous Inhibitor of L-type Calcium Channels

Shiri Levy; Ofer Beharier; Yoram Etzion; Merav Mor; Liat Buzaglo; Lior Shaltiel; Levi A. Gheber; Joy Kahn; Anthony J. Muslin; Amos Katz; Daniel Gitler; Arie Moran

The L-type calcium channel (LTCC) has a variety of physiological roles that are critical for the proper function of many cell types and organs. Recently, a member of the zinc-regulating family of proteins, ZnT-1, was recognized as an endogenous inhibitor of the LTCC, but its mechanism of action has not been elucidated. In the present study, using two-electrode voltage clamp recordings in Xenopus oocytes, we demonstrate that ZnT-1-mediated inhibition of the LTCC critically depends on the presence of the LTCC regulatory β-subunit. Moreover, the ZnT-1-induced inhibition of the LTCC current is also abolished by excess levels of the β-subunit. An interaction between ZnT-1 and the β-subunit, as demonstrated by co-immunoprecipitation and by fluorescence resonance energy transfer, is consistent with this result. Using surface biotinylation and total internal reflection fluorescence microscopy in HEK293 cells, we show a ZnT-1-dependent decrease in the surface expression of the pore-forming α1-subunit of the LTCC. Similarly, a decrease in the surface expression of the α1-subunit is observed following up-regulation of the expression of endogenous ZnT-1 in rapidly paced cultured cardiomyocytes. We conclude that ZnT-1-mediated inhibition of the LTCC is mediated through a functional interaction of ZnT-1 with the LTCC β-subunit and that it involves a decrease in the trafficking of the LTCC α1-subunit to the surface membrane.


The Journal of Neuroscience | 2014

Phosphorylation of Synapsin I by Cyclin-Dependent Kinase-5 Sets the Ratio between the Resting and Recycling Pools of Synaptic Vesicles at Hippocampal Synapses

Anne Mj Verstegen; Erica Tagliatti; Gabriele Lignani; Antonella Marte; Tamar Stolero; Merav Atias; Anna Corradi; Flavia Valtorta; Daniel Gitler; Franco Onofri; Anna Fassio; Fabio Benfenati

Cyclin-dependent kinase-5 (Cdk5) was reported to downscale neurotransmission by sequestering synaptic vesicles (SVs) in the release-reluctant resting pool, but the molecular targets mediating this activity remain unknown. Synapsin I (SynI), a major SV phosphoprotein involved in the regulation of SV trafficking and neurotransmitter release, is one of the presynaptic substrates of Cdk5, which phosphorylates it in its C-terminal region at Ser549 (site 6) and Ser551 (site 7). Here we demonstrate that Cdk5 phosphorylation of SynI fine tunes the recruitment of SVs to the active recycling pool and contributes to the Cdk5-mediated homeostatic responses. Phosphorylation of SynI by Cdk5 is physiologically regulated and enhances its binding to F-actin. The effects of Cdk5 inhibition on the size and depletion kinetics of the recycling pool, as well as on SV distribution within the nerve terminal, are virtually abolished in mouse SynI knock-out (KO) neurons or in KO neurons expressing the dephosphomimetic SynI mutants at sites 6,7 or site 7 only. The observation that the single site-7 mutant phenocopies the effects of the deletion of SynI identifies this site as the central switch in mediating the synaptic effects of Cdk5 and demonstrates that SynI is necessary and sufficient for achieving the effects of the kinase on SV trafficking. The phosphorylation state of SynI by Cdk5 at site 7 is regulated during chronic modification of neuronal activity and is an essential downstream effector for the Cdk5-mediated homeostatic scaling.


Embo Molecular Medicine | 2012

Novel telomerase‐increasing compound in mouse brain delays the onset of amyotrophic lateral sclerosis

Erez Eitan; Ailon Tichon; Aviv Gazit; Daniel Gitler; Shimon Slavin; Esther Priel

Telomerase is expressed in the neonatal brain, in distinct regions of adult brain, and was shown to protect developing neurons from apoptosis. Telomerase reactivation by gene manipulation reverses neurodegeneration in aged telomerase‐deficient mice. Hence, we and others hypothesized that increasing telomerase expression by pharmaceutical compounds may protect brain cells from death caused by damaging agents. In this study, we demonstrate for the first time that the novel compound AGS‐499 increases telomerase activity and expression in the mouse brain and spinal cord (SC). It exerts neuroprotective effects in NMDA‐injected CD‐1 mice, delays the onset and progression of the amyotrophic lateral sclerosis (ALS) disease in SOD1 transgenic mice, and, after the onset of ALS, it increases the survival of motor neurons in the SC by 60%. The survival of telomerase‐expressing cells (i.e. motor neurons), but not telomerase‐deficient cells, exposed to oxidative stress was increased by AGS‐499 treatment, suggesting that the AGS‐499 effects are telomerase‐mediated. Therefore, a controlled and transient increase in telomerase expression and activity in the brain by AGS‐499 may exert neuroprotective effects.


The Journal of Neuroscience | 2013

Fast Vesicle Transport Is Required for the Slow Axonal Transport of Synapsin

Yong Tang; David A. Scott; Utpal Das; Daniel Gitler; Archan Ganguly; Subhojit Roy

Although it is known that cytosolic/soluble proteins synthesized in cell bodies are transported at much lower overall velocities than vesicles in fast axonal transport, the fundamental basis for this slow movement is unknown. Recently, we found that cytosolic proteins in axons of mouse cultured neurons are conveyed in a manner that superficially resembles diffusion, but with a slow anterograde bias that is energy- and motor-dependent (Scott et al., 2011). Here we show that slow axonal transport of synapsin, a prototypical member of this rate class, is dependent upon fast vesicle transport. Despite the distinct overall dynamics of slow and fast transport, experimentally induced and intrinsic variations in vesicle transport have analogous effects on slow transport of synapsin as well. Dynamic cotransport of vesicles and synapsin particles is also seen in axons, consistent with a model where higher-order assemblies of synapsin are conveyed by transient and probabilistic associations with vesicles moving in fast axonal transport. We posit that such dynamic associations generate the slow overall anterogradely biased flow of the population (“dynamic-recruitment model”). Our studies uncover the underlying kinetic basis for a classic cytosolic/soluble protein moving in slow axonal transport and reveal previously unknown links between slow and fast transport, offering a clearer conceptual picture of this curious phenomenon.


Microscopy and Microanalysis | 2011

SpRET: highly sensitive and reliable spectral measurement of absolute FRET efficiency.

Shiri Levy; Christian Wilms; Eliaz Brumer; Joy Kahn; Lilach Pnueli; Yoav Arava; Jens Eilers; Daniel Gitler

Contemporary research aims to understand biological processes not only by identifying participating proteins, but also by characterizing the dynamics of their interactions. Because Försters Resonance Energy Transfer (FRET) is invaluable for the latter undertaking, its usage is steadily increasing. However, FRET measurements are notoriously error-prone, especially when its inherent efficiency is low, a not uncommon situation. Furthermore, many FRET methods are either difficult to implement, are not appropriate for observation of cellular dynamics, or report instrument-specific indices that hamper communication of results within the scientific community. We present here a novel comprehensive spectral methodology, SpRET, which substantially increases both the reliability and sensitivity of FRET microscopy, even under unfavorable conditions such as weak fluorescence or the presence of noise. While SpRET overcomes common pitfalls such as interchannel crosstalk and direct excitation of the acceptor, it also excels in removal of autofluorescence or background contaminations and in correcting chromatic aberrations, often overlooked factors that severely undermine FRET experiments. Finally, SpRET quantitatively reports absolute rather than relative FRET efficiency values, as well as the acceptor-to-donor molar ratio, which is critical for full and proper interpretation of FRET experiments. Thus, SpRET serves as an advanced, improved, and powerful tool in the cell biologists toolbox.

Collaboration


Dive into the Daniel Gitler's collaboration.

Top Co-Authors

Avatar

Joy Kahn

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Ofer Beharier

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Shiri Levy

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amos Katz

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Arie Moran

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Ayelet Orenbuch

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Dan Mikulincer

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Merav Atias

Ben-Gurion University of the Negev

View shared research outputs
Researchain Logo
Decentralizing Knowledge