Daniel Grenier
Laval University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Grenier.
Future Microbiology | 2012
Nahuel Fittipaldi; Mariela Segura; Daniel Grenier; Marcelo Gottschalk
Streptococcus suis is a major swine pathogen responsible for important economic losses to the swine industry worldwide. It is also an emerging zoonotic agent of meningitis and streptococcal toxic shock-like syndrome. Since the recent recognition of the high prevalence of S. suis human disease in southeast and east Asia, the interest of the scientific community in this pathogen has significantly increased. In the last few years, as a direct consequence of these intensified research efforts, large amounts of data on putative virulence factors have appeared in the literature. Although the presence of some proposed virulence factors does not necessarily define a S. suis strain as being virulent, several cell-associated or secreted factors are clearly important for the pathogenesis of the S. suis infection. In order to cause disease, S. suis must colonize the host, breach epithelial barriers, reach and survive in the bloodstream, invade different organs, and cause exaggerated inflammation. In this review, we discuss the potential contribution of different described S. suis virulence factors at each step of the pathogenesis of the infection. Finally, we briefly discuss other described virulence factors, virulence factor candidates and virulence markers for which a precise role at specific steps of the pathogenesis of the S. suis infection has not yet been clearly established.
Microbes and Infection | 2000
Renée Gendron; Daniel Grenier; Léo-François Maheu-Robert
Dental procedures, but more importantly, oral infections and poor oral health can provoke the introduction of oral microorganisms into the bloodstream or the lymphatic system. The subsequent attachment and multiplication of these bacteria on tissues or organs can lead to focal oral infections. Pathogenic agents may also remain at their primary oral site but the toxins liberated can reach an organ or tissue via the bloodstream and cause metastatic injury. Finally, metastatic inflammation may result from an immunological injury caused by oral bacteria or their soluble products that enter the bloodstream and react with circulating specific antibodies to form macromolecular complexes.
Journal of Dental Research | 2006
Elisoa Andrian; Daniel Grenier; Mahmoud Rouabhia
Emerging data on the consequences of the interactions between invasive oral bacteria and host cells have provided new insights into the pathogenesis of periodontal disease. Indeed, modulation of the mucosal epithelial barrier by pathogenic bacteria appears to be a critical step in the initiation and progression of periodontal disease. Periodontopathogens such as Porphyromonas gingivalis have developed different strategies to perturb the structural and functional integrity of the gingival epithelium. P. gingivalis adheres to, invades, and replicates within human epithelial cells. Adhesion of P. gingivalis to host cells is multimodal and involves the interaction of bacterial cell-surface adhesins with receptors expressed on the surfaces of epithelial cells. Internalization of P. gingivalis within host cells is rapid and requires both bacterial contact-dependent components and host-induced signaling pathways. P. gingivalis also subverts host responses to bacterial challenges by inactivating immune cells and molecules and by activating host processes leading to tissue destruction. The adaptive ability of these pathogens that allows them to survive within host cells and degrade periodontal tissue constituents may contribute to the initiation and progression of periodontitis. In this paper, we review current knowledge on the molecular cross-talk between P. gingivalis and gingival epithelial cells in the development of periodontitis.
Journal of Dental Research | 2006
Charles Bodet; Fatiha Chandad; Daniel Grenier
Periodontitis is a chronic inflammatory disease affecting oral tissues. The continuous, high production of cytokines by host cells triggered by periodontopathogens is thought to be responsible for the destruction of tooth-supporting tissues. Macrophages play a critical role in this host inflammatory response to periodontopathogens. The aim of this study was to investigate the effect of non-dialyzable material prepared from cranberry juice concentrate on the pro-inflammatory cytokine response of macrophages induced by lipopolysaccharides (LPS) from Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum subsp. nucleatum, Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Escherichia coli. Interleukin-1 beta (IL-1β), IL-6, IL-8, tumor necrosis factor alpha (TNF-α), and Regulated on Activation Normal T-cell Expressed and Secreted (RANTES) production by macrophages treated with the cranberry fraction prior to stimulation by LPS was evaluated by ELISA. Our results clearly indicate that the cranberry fraction was a potent inhibitor of the pro-inflammatory cytokine and chemokine responses induced by LPS. This suggests that cranberry constituents may offer perspectives for the development of a new therapeutic approach to the prevention and treatment of periodontitis.
Infection and Immunity | 2004
Elisoa Andrian; Daniel Grenier; Mahmoud Rouabhia
ABSTRACT Porphyromonas gingivalis is a gram-negative anaerobic bacterium that is considered the key etiologic agent of chronic periodontitis. Arg- and Lys-gingipain cysteine proteinases produced by P. gingivalis are key virulence factors and are believed to be essential for significant tissue component degradation, leading to host tissue invasion by periodontopathogens. Two in vitro models were used to determine the extent to which P. gingivalis can reach connective tissue. The tissue penetration potential of P. gingivalis was first investigated by using an engineered human oral mucosa model composed of normal human epithelial cells and fibroblasts. Internalized bacteria were assessed by transmission electron microscopy. Bacteria were observed within multilayered gingival epithelial cells and in the space between the stratified epithelium and the lamina propria. A gingipain-null mutant strain of P. gingivalis was found to be less potent in penetrating tissue than the wild-type strain. Proinflammatory responses to P. gingivalis infection were evaluated. P. gingivalis increased the secretion of interleukin-1β, interleukin-6, interleukin-8, and tumor necrosis factor alpha. In the second part of the study, the contribution of P. gingivalis gingipains to tissue penetration was investigated by using a reconstituted basement membrane model (Matrigel). The penetration of 14C-labeled P. gingivalis cells through Matrigel was significantly reduced when leupeptin, a specific inhibitor of Arg-gingipain activity, was added or when a gingipain-null mutant was used. The results obtained with these two relevant models support the capacities of P. gingivalis to infiltrate periodontal tissue and to modulate the proinflammatory response and suggest a critical role of gingipains in tissue destruction.
Journal of Periodontal Research | 2008
Charles Bodet; Vu Dang La; F. Epifano; Daniel Grenier
BACKGROUND AND OBJECTIVE Periodontitis is a chronic inflammatory disease of bacterial etiology, affecting tooth-supporting tissues. The host inflammatory response to periodontopathogens, notably the high and continuous production of cytokines, is considered a major factor causing the local tissue destruction observed in periodontitis. The aim of the present study was to investigate the effect of naringenin, a major flavanone in grapefruits and tomatoes, on the lipopolysaccharide-induced pro-inflammatory cytokine production by host cells, using two different models. MATERIAL AND METHODS The effect of naringenin was characterized using macrophages stimulated with the lipopolysaccharide of either Aggregatibacter actinomycetemcomitans or Escherichia coli and using whole blood stimulated with A. actinomycetemcomitans lipopolysaccharide, in the presence or absence of naringenin. Lipopolysaccharide-induced interleukin-1 beta, interleukin-6, interleukin-8 and tumor necrosis factor-alpha production by macrophages and whole-blood samples treated with naringenin were evaluated using an enzyme-linked immunosorbent assay. Changes in the phosphorylation states of macrophage kinases induced by A. actinomycetemcomitans lipopolysaccharide and naringenin were characterized by immunoblot screening. RESULTS Our results clearly indicated that naringenin is a potent inhibitor of the pro-inflammatory cytokine response induced by lipopolysaccharide in both macrophages and in whole blood. Naringenin markedly inhibited the phosphorylation on serines 63 and 73 of Jun proto-oncogene-encoded AP-1 transcription factor in lipopolysaccharide-stimulated macrophages. CONCLUSION The results from the present study suggest that naringenin holds promise as a therapeutic agent for treating inflammatory diseases such as periodontitis.
Journal of Dental Research | 1996
Yanli Ding; Veli-Jukka Uitto; Markus Haapasalo; K. Lounatmaa; Konttinen Yt; Tuula Salo; Daniel Grenier; Timo Sorsa
Tissue destruction during periodontitis is believed to be primarily brought about by leukocyte proteinases. We postulate that oral spirochetes cause discharge of polymorphonuclear leukocyte (PMN) lysosomal enzymes. Effects of Treponema denticola 53-kDa outer membrane protein, lipopolysaccharide (LPS), and peptidoglycan on degranulation of matrix metalloproteinases (MMP)-8 (collagenase) and -9 (gelatinase), cathepsin G, and elastase by human peripheral blood PMNs were studied by specific enzyme assays and Western blot analysis. T. denticola 53-kDa outer membrane protein was found to be a particularly efficient inducer of MMP-8 release. The induction was comparable with that of phorbol myristate acetate, a known inducer of PMN specific granule discharge. All of the treponemal substances, most notably the 53-kDa protein and LPS, induced release of MMP-9, a component of C-type granules. Both collagenase and gelatinase released from PMNs were mostly in active forms. Release of cathepsin G and elastase was also observed with the 53-kDa protein treatment. The other T. denticola substances did not induce release of these serine proteinases. Lactate dehydrogenase was not released from PMNs by the treatments, indicating that the degranulation was specific and not caused by toxic effects of the substances. This was confirmed by transmission electron microscopy of PMNs treated with the 53-kDa protein that showed rapid vacuole formation and cell shape changes but no disintegration of the cells. Thus, T. denticola may participate in the PMN-dependent extracellular matrix degradation during the course of periodontal inflammation by triggering the secretion and activation of matrix metalloproteinases.
Journal of Dental Research | 2009
Vu Dang La; Amy B. Howell; Daniel Grenier
Matrix metalloproteinases (MMPs) produced by resident and inflammatory cells in response to periodontopathogens play a major role in periodontal tissue destruction. Our aim was to investigate the effects of A-type cranberry proanthocyanidins (AC-PACs) on: (i) the production of various MMPs by human monocyte-derived macrophages stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS), and (ii) the catalytic activity of recombinant MMP-1 and MMP-9. The effects of AC-PACs on the expression of 5 protein kinases and the activity of nuclear factor-kappa B (NF-κB) p65 in macrophages stimulated with LPS were also monitored. Our results indicated that AC-PACs inhibited the production of MMPs in a concentration-dependent manner. Furthermore, the catalytic activity of MMP-1 and MMP-9 was also inhibited. The inhibition of MMP production was associated with reduced phosphorylation of key intracellular kinases and the inhibition of NF-κB p65 activity. AC-PACs thus show potential for the development of novel host-modulating strategies to inhibit MMP-mediated tissue destruction during periodontitis.
Infection and Immunity | 2001
Daniel Grenier; Sandra Imbeault; Pascale Plamondon; Gilbert Grenier; Koji Nakayama; Denis Mayrand
ABSTRACT Porphyromonas gingivalis, a bacterium associated with active chronic periodontitis lesions, produces several proteolytic enzymes that are thought to be involved in host colonization, perturbation of the immune system, and tissue destruction. The aim of the present study was to investigate the contribution of Arg- and Lys-gingipains produced by P. gingivalis to its growth. Although all of the proteins studied were degraded by P. gingivalis, only human serum albumin and transferrin supported growth during serial transfers in a chemically defined medium (CDM). Growth studies with site-directed gingipain-deficient mutants ofP. gingivalis revealed that inactivation of both gingipains prevents growth, whereas inactivation of either Arg- or Lys-gingipain activity extended the doubling times to 33 or 13 h, respectively, compared to 9 h for the parent strain. Growth of the mutants and the parent strain was similar when the CDM was supplemented with a protein hydrolysate instead of human serum albumin. Incubation of resting P. gingivalis ATCC 33277 cells with fluorophore-labeled albumin indicated that the proteolytic fragments generated by the gingipains were internalized by the bacterial cells. Internalization of fluorophore-labeled albumin fragments was reduced or completely inhibited in the proteinase-deficient mutants. Interestingly, gingival crevicular fluid samples from diseased periodontal sites contained low-molecular-mass albumin fragments, whereas samples from healthy sites did not. The critical role of proteinases in the growth of P. gingivalis was further investigated using specific Arg- and Lys-gingipain inhibitors. Adding the inhibitors to CDM containing albumin revealed that leupeptin (Arg-gingipain A and B inhibitor) was more efficient at inhibiting growth than cathepsin B inhibitor II (Lys-gingipain inhibitor). Our study suggests that Arg-gingipains and, to a lesser extent, Lys-gingipain play an important role in the growth of P. gingivalis in a defined medium containing a human protein as the sole carbon and nitrogen source.
Antimicrobial Agents and Chemotherapy | 2000
Daniel Grenier; Marie-Pierre Huot; Denis Mayrand
ABSTRACT Three tetracyclines (tetracycline, doxycycline, and minocycline) were found to possess iron-chelating activity in a colorimetric siderophore assay. Determination of MICs indicated that the activity of doxycycline against the periodontopathogen Actinobacillus actinomycetemcomitans was only slightly influenced by the presence of an excess of iron that likely saturates the antibiotic. On the other hand, the MICs of doxycycline and minocycline were significantly lower for A. actinomycetemcomitans cultivated under iron-poor conditions than under iron-rich conditions.