Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel H. Ebert is active.

Publication


Featured researches published by Daniel H. Ebert.


Proceedings of the National Academy of Sciences of the United States of America | 2014

(+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium

María Belén Jiménez-Díaz; Daniel H. Ebert; Yandira Salinas; Anupam Pradhan; Adele M. Lehane; Marie-Eve Myrand-Lapierre; Kathleen O’Loughlin; David M. Shackleford; Mariana Justino de Almeida; Angela K. Carrillo; Julie Clark; Adelaide S. M. Dennis; Jonathon Diep; Xiaoyan Deng; Sandra Duffy; Aaron N. Endsley; Greg Fedewa; W. Armand Guiguemde; María G. Gómez; Gloria Holbrook; Jeremy A. Horst; Charles C. Kim; Jian Liu; Marcus C. S. Lee; Amy Matheny; María Santos Martínez; Gregory Miller; Ane Rodríguez-Alejandre; Laura Sanz; Martina Sigal

Significance Useful antimalarial drugs must be rapidly acting, highly efficacious, and have low potential for developing resistance. (+)-SJ733 targets a Plasmodium cation-transporting ATPase, ATP4. (+)-SJ733 cleared parasites in vivo as quickly as artesunate by specifically inducing eryptosis/senescence in infected, treated erythrocytes. Although in vitro selection of pfatp4 mutants with (+)-SJ733 proceeded with moderate frequency, during in vivo selection of pbatp4 mutants, resistance emerged slowly and produced marginally resistant mutants with poor fitness. In addition, (+)-SJ733 met all other criteria for a clinical candidate, including high oral bioavailability, a high safety margin, and transmission blocking activity. These results demonstrate that targeting ATP4 has great potential to deliver useful drugs for malaria eradication. Drug discovery for malaria has been transformed in the last 5 years by the discovery of many new lead compounds identified by phenotypic screening. The process of developing these compounds as drug leads and studying the cellular responses they induce is revealing new targets that regulate key processes in the Plasmodium parasites that cause malaria. We disclose herein that the clinical candidate (+)-SJ733 acts upon one of these targets, ATP4. ATP4 is thought to be a cation-transporting ATPase responsible for maintaining low intracellular Na+ levels in the parasite. Treatment of parasitized erythrocytes with (+)-SJ733 in vitro caused a rapid perturbation of Na+ homeostasis in the parasite. This perturbation was followed by profound physical changes in the infected cells, including increased membrane rigidity and externalization of phosphatidylserine, consistent with eryptosis (erythrocyte suicide) or senescence. These changes are proposed to underpin the rapid (+)-SJ733-induced clearance of parasites seen in vivo. Plasmodium falciparum ATPase 4 (pfatp4) mutations that confer resistance to (+)-SJ733 carry a high fitness cost. The speed with which (+)-SJ733 kills parasites and the high fitness cost associated with resistance-conferring mutations appear to slow and suppress the selection of highly drug-resistant mutants in vivo. Together, our data suggest that inhibitors of PfATP4 have highly attractive features for fast-acting antimalarials to be used in the global eradication campaign.


Journal of Clinical Investigation | 2003

Utilization of sialic acid as a coreceptor is required for reovirus-induced biliary disease

Erik S. Barton; Bryan E. Youree; Daniel H. Ebert; J. Craig Forrest; Jodi L. Connolly; Tibor Valyi-Nagy; Kay Washington; J. Denise Wetzel; Terence S. Dermody

Infection of neonatal mice with some reovirus strains produces a disease similar to infantile biliary atresia, but previous attempts to correlate reovirus infection with this disease have yielded conflicting results. We used isogenic reovirus strains T3SA- and T3SA+, which differ solely in the capacity to bind sialic acid as a coreceptor, to define the role of sialic acid in reovirus encephalitis and biliary tract infection in mice. Growth in the intestine was equivalent for both strains following peroral inoculation. However, T3SA+ spread more rapidly from the intestine to distant sites and replicated to higher titers in spleen, liver, and brain. Strikingly, mice infected with T3SA+ but not T3SA- developed steatorrhea and bilirubinemia. Liver tissue from mice infected with T3SA+ demonstrated intense inflammation focused at intrahepatic bile ducts, pathology analogous to that found in biliary atresia in humans, and high levels of T3SA+ antigen in bile duct epithelial cells. T3SA+ bound 100-fold more efficiently than T3SA- to human cholangiocarcinoma cells. These observations suggest that the carbohydrate-binding specificity of a virus can dramatically alter disease in the host and highlight the need for epidemiologic studies focusing on infection by sialic acid-binding reovirus strains as a possible contributor to the pathogenesis of neonatal biliary atresia.


Developmental Cell | 2011

Eliminating SF-1 (NR5A1) Sumoylation In Vivo Results in Ectopic Hedgehog Signaling and Disruption of Endocrine Development

Florence Lee; Emily J. Faivre; Miyuki Suzawa; Erik Lontok; Daniel H. Ebert; Fang Cai; Denise D. Belsham; Holly A. Ingraham

Sumoylation is generally considered a repressive mark for many transcription factors. However, the in vivo importance of sumoylation for any given substrate remains unclear and is questionable because the extent of sumoylation appears exceedingly low for most substrates. Here, we permanently eliminated SF-1/NR5A1 sumoylation in mice (Sf-1(K119R, K194R, or 2KR)) and found that Sf-1(2KR/2KR) mice failed to phenocopy a simple gain of SF-1 function or show elevated levels of well-established SF-1 target genes. Instead, mutant mice exhibited marked endocrine abnormalities and changes in cell fate that reflected an inappropriate activation of hedgehog signaling and other potential SUMO-sensitive targets. Furthermore, unsumoylatable SF-1 mutants activated Shh and exhibited preferential recruitment to Shh genomic elements in cells. We conclude that the sumoylation cycle greatly expands the functional capacity of transcription factors such as SF-1 and is leveraged during development to achieve cell-type-specific gene expression in multicellular organisms.


Journal of Virology | 2001

Adaptation of Reovirus to Growth in the Presence of Protease Inhibitor E64 Segregates with a Mutation in the Carboxy Terminus of Viral Outer-Capsid Protein ς3

Daniel H. Ebert; J. Denise Wetzel; David E. Brumbaugh; Stacey R. Chance; Laura E. Stobie; Geoffrey S. Baer; Terence S. Dermody

ABSTRACT Reovirus virions are internalized into cells by receptor-mediated endocytosis. Within the endocytic compartment, the viral outer capsid undergoes acid-dependent proteolysis leading to degradation of ς3 protein and proteolytic cleavage of μ1/μ1C protein. E64 is a specific inhibitor of cysteine-containing proteases that blocks disassembly of reovirus virions. To identify domains in reovirus proteins that influence susceptibility to E64-mediated inhibition of disassembly, we selected variant viruses by serial passage of strain type 3 Dearing (T3D) in murine L929 cells treated with E64. E64-adapted variant viruses (D-EA viruses) produced 7- to 17-fold-greater yields than T3D did after infection of cells treated with 100 μM E64. Viral genes that segregate with growth of D-EA viruses in the presence of E64 were identified by using reassortant viruses isolated from independent crosses of E64-sensitive strain type 1 Lang and two prototype D-EA viruses. Growth of reassortant viruses in the presence of E64 segregated with the S4 gene, which encodes outer-capsid protein ς3. Sequence analysis of S4 genes of three D-EA viruses isolated from independent passage series revealed a common tyrosine-to-histidine mutation at amino acid 354 in the deduced amino acid sequence of ς3. Proteolysis of D-EA virions by endocytic protease cathepsin L occurred with faster kinetics than proteolysis of wild-type T3D virions. Treatment of D-EA virions, but not T3D virions, with cathepsin D resulted in proteolysis of ς3, a property that also was found to segregate with the D-EA S4 gene. These results indicate that a region in ς3 protein containing amino acid 354 influences susceptibility of ς3 to proteolysis during reovirus disassembly.


Journal of Virology | 2002

A Single Mutation in the Carboxy Terminus of Reovirus Outer-Capsid Protein σ3 Confers Enhanced Kinetics of σ3 Proteolysis, Resistance to Inhibitors of Viral Disassembly, and Alterations in σ3 Structure

Gregory J. Wilson; Emma L. Nason; Charles S. Hardy; Daniel H. Ebert; J. Denise Wetzel; B. V. Venkataram Prasad; Terence S. Dermody

ABSTRACT Mammalian reoviruses undergo acid-dependent proteolytic disassembly within endosomes, resulting in formation of infectious subvirion particles (ISVPs). ISVPs are obligate intermediates in reovirus disassembly that mediate viral penetration into the cytoplasm. The initial biochemical event in the reovirus disassembly pathway is the proteolysis of viral outer-capsid protein σ3. Mutant reoviruses selected during persistent infection of murine L929 cells (PI viruses) demonstrate enhanced kinetics of viral disassembly and resistance to inhibitors of endocytic acidification and proteolysis. To identify sequences in σ3 that modulate acid-dependent and protease-dependent steps in reovirus disassembly, the σ3 proteins of wild-type strain type 3 Dearing; PI viruses L/C, PI 2A1, and PI 3-1; and four novel mutant σ3 proteins were expressed in insect cells and used to recoat ISVPs. Treatment of recoated ISVPs (rISVPs) with either of the endocytic proteases cathepsin L or cathepsin D demonstrated that an isolated tyrosine-to-histidine mutation at amino acid 354 (Y354H) enhanced σ3 proteolysis during viral disassembly. Yields of rISVPs containing Y354H in σ3 were substantially greater than those of rISVPs lacking this mutation after growth in cells treated with either acidification inhibitor ammonium chloride or cysteine protease inhibitor E64. Image reconstructions of electron micrographs of virus particles containing wild-type or mutant σ3 proteins revealed structural alterations in σ3 that correlate with the Y354H mutation. These results indicate that a single mutation in σ3 protein alters its susceptibility to proteolysis and provide a structural framework to understand mechanisms of σ3 cleavage during reovirus disassembly.


Journal of Organic Chemistry | 2015

Salinipostins A-K, long-chain bicyclic phosphotriesters as a potent and selective antimalarial chemotype.

Christopher J. Schulze; Gabriel Navarro; Daniel H. Ebert; Joseph L. DeRisi; Roger G. Linington

Despite significant advances in antimalarial chemotherapy over the past 30 years, development of resistance to frontline drugs remains a significant challenge that limits efforts to eradicate the disease. We now report the discovery of a new class of antimalarials, salinipostins A-K, with low nanomolar potencies and high selectivity indices against mammalian cells (salinipostin A: Plasmodium falciparum EC50 50 nM, HEK293T cytotoxicity EC50 > 50 μM). These compounds were isolated from a marine-derived Salinospora sp. bacterium and contain a bicyclic phosphotriester core structure, which is a rare motif among natural products. This scaffold differs significantly from the structures of known antimalarial compounds and represents a new lead structure for the development of therapeutic targets in malaria. Examination of the growth stage specificity of salinipostin A indicates that it exhibits growth stage-specific effects that differ from compounds that inhibit heme polymerization, while resistance selection experiments were unable to identify parasite populations that exhibited significant resistance against this compound class.


PLOS ONE | 2017

Plasmid-free CRISPR/Cas9 genome editing in Plasmodium falciparum confirms mutations conferring resistance to the dihydroisoquinolone clinical candidate SJ733

Emily D. Crawford; Jenai Quan; Jeremy A. Horst; Daniel H. Ebert; Wesley Wu; Joseph L. DeRisi

Genetic manipulation of the deadly malaria parasite Plasmodium falciparum remains challenging, but the rise of CRISPR/Cas9-based genome editing tools is increasing the feasibility of altering this parasite’s genome in order to study its biology. Of particular interest is the investigation of drug targets and drug resistance mechanisms, which have major implications for fighting malaria. We present a new method for introducing drug resistance mutations in P. falciparum without the use of plasmids or the need for cloning homologous recombination templates. We demonstrate this method by introducing edits into the sodium efflux channel PfATP4 by transfection of a purified CRISPR/Cas9-guide RNA ribonucleoprotein complex and a 200-nucleotide single-stranded oligodeoxynucleotide (ssODN) repair template. Analysis of whole genome sequencing data with the variant-finding program MinorityReport confirmed that only the intended edits were made, and growth inhibition assays confirmed that these mutations confer resistance to the antimalarial SJ733. The method described here is ideally suited for the introduction of mutations that confer a fitness advantage under selection conditions, and the novel finding that an ssODN can function as a repair template in P. falciparum could greatly simplify future editing attempts regardless of the nuclease used or the delivery method.


Journal of Biological Chemistry | 2002

Cathepsin L and Cathepsin B Mediate Reovirus Disassembly in Murine Fibroblast Cells

Daniel H. Ebert; Jan M. Deussing; Christoph Peters; Terence S. Dermody


Journal of Virology | 1999

Mutant Cells Selected during Persistent Reovirus Infection Do Not Express Mature Cathepsin L and Do Not Support Reovirus Disassembly

Geoffrey S. Baer; Daniel H. Ebert; Chia J. Chung; Ann H. Erickson; Terence S. Dermody


Proceedings of the National Academy of Sciences of the United States of America | 1998

HEPATOCYTE NUCLEAR FACTOR-1 ACTS AS AN ACCESSORY FACTOR TO ENHANCE THE INHIBITORY ACTION OF INSULIN ON MOUSE GLUCOSE-6-PHOSPHATASE GENE TRANSCRIPTION

Ryan S. Streeper; Erin M. Eaton; Daniel H. Ebert; Stacey C. Chapman; Christina A. Svitek; Richard M. O'Brien

Collaboration


Dive into the Daniel H. Ebert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Matheny

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Angela K. Carrillo

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge