Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel H. Gonzalez is active.

Publication


Featured researches published by Daniel H. Gonzalez.


Plant Physiology | 2005

Differential expression of the arabidopsis cytochrome c genes Cytc-1 and Cytc-2. evidence for the involvement of TCP-domain protein-binding elements in anther- and meristem-specific expression of the Cytc-1 gene

Elina Welchen; Daniel H. Gonzalez

The promoters of the Arabidopsis (Arabidopsis thaliana) cytochrome c genes, Cytc-1 and Cytc-2, were analyzed using plants transformed with fusions to the β-glucuronidase coding sequence. Histochemical staining of plants indicated that the Cytc-1 promoter directs preferential expression in root and shoot meristems and in anthers. In turn, plants transformed with the Cytc-2 promoter fusions showed preferential expression in vascular tissues of cotyledons, leaves, roots, and hypocotyls, and also in anthers. Quantitative measurements in extracts prepared from different organs suggested that expression of Cytc-1 is higher in flowers, while that of Cytc-2 is higher in leaves. The analysis of a set of deletions and site-directed mutants of the Cytc-1 promoter indicated that a segment located between −147 and −156 from the translation start site is required for expression and that site II elements (TGGGCC/T) located in this region, coupled with a downstream internal telomeric repeat (AAACCCTAA), are responsible for the expression pattern of this gene. Proteins present in cauliflower nuclear extracts, as well as a recombinant protein from the TCP-domain family, were able to specifically bind to the region required for expression. We propose that expression of the Cytc-1 gene is linked to cell proliferation through the elements described above. The fact that closely located site II motifs are present in similar locations in several genes encoding proteins involved in cytochrome c-dependent respiration suggests that these elements may be the target of factors that coordinate the expression of nuclear genes encoding components of this part of the mitochondrial respiratory chain.


Journal of Biological Chemistry | 2002

Redox Regulation of Plant Homeodomain Transcription Factors

Adriana E. Tron; Carlos W. Bertoncini; Raquel L. Chan; Daniel H. Gonzalez

Several families of plant transcription factors contain a conserved DNA binding motif known as the homeodomain. In two of these families, named Hd-Zip and glabra2, the homeodomain is associated with a leucine zipper-like dimerization motif. A group of Hd-Zip proteins, namely Hd-ZipII, contain a set of conserved cysteines within the dimerization motif and adjacent to it. Incubation of one of these proteins, Hahb-10, in the presence of thiol-reducing agents such as dithiothreitol or reduced glutathione produced a significant increase in DNA binding. Under such conditions, the protein migrated as a monomer in non-reducing SDS-polyacrylamide gels. Under oxidizing conditions, a significant proportion of the protein migrated as dimers, suggesting the formation of intermolecular disulfide bonds. A similar behavior was observed for the glabra2 protein HAHR1, which also contains two conserved cysteines within its dimerization domain. Site-directed mutagenesis of the cysteines to serines indicated that each of them has different roles in the activation of the proteins. Purified thioredoxin was able to direct the NADPH-dependent activation of Hahb-10 and HAHR1 in the presence of thioredoxin reductase. The results suggest that redox conditions may operate to regulate the activity of these groups of plant transcription factors within plant cells.


Plant Physiology | 2006

Overrepresentation of Elements Recognized by TCP-Domain Transcription Factors in the Upstream Regions of Nuclear Genes Encoding Components of the Mitochondrial Oxidative Phosphorylation Machinery

Elina Welchen; Daniel H. Gonzalez

We have observed that a cis-acting regulatory element, known as site II, is overrepresented in the promoters of nuclear genes encoding components of the oxidative phosphorylation (OxPhos) machinery from both Arabidopsis ( Arabidopsis thaliana ) and rice ( Oryza sativa ). Site II elements have been


Plant Physiology | 2011

A Mechanistic Link between STM and CUC1 during Arabidopsis Development

Silvana V. Spinelli; Ana Paula Martin; Ivana L. Viola; Daniel H. Gonzalez; Javier F. Palatnik

The KNOXI transcription factor SHOOT MERISTEMLESS (STM) is required to establish and maintain the Arabidopsis (Arabidopsis thaliana) apical meristem, yet little is known about its direct targets. Using different approaches we demonstrate that the induction of STM causes a significant up-regulation of the organ boundary gene CUP SHAPED COTYLEDON1 (CUC1), which is specific and independent of other meristem regulators. We further show that the regulation of CUC1 by STM is direct and identify putative binding sites in its promoter. Continuous expression of STM in Arabidopsis leaf primordia also causes the activation of CUC2-3, as well as microRNA MIR164a, which provides a negative feedback loop by posttranscriptionally regulating CUC1 and CUC2. The results bring new insights into the mechanistic links between KNOXI and CUC transcription factors and contribute to the understanding of the regulatory network controlled by STM.


Journal of Experimental Botany | 2012

The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins

Nora G. Uberti-Manassero; Leandro Exequiel Lucero; Ivana L. Viola; Abelardo C. Vegetti; Daniel H. Gonzalez

The function of the class I TCP transcription factor TCP15 from Arabidopsis thaliana has been studied through the analysis of plants that express a fusion of this protein to the EAR repressor domain. Constitutive expression of TCP15-EAR produces growth arrest at the seedling stage, before leaf emergence. Expression of the repressor fusion from the AtTCP15 promoter produces small plants with leaves whose margins progressively curve upwards, starting from the basal part of the lamina. Leaves contain smaller and less differentiated cells, both on the adaxial and abaxial sides. The abaxial domain is relatively enlarged, with disorganized cells separated by empty spaces. TCP15-EAR also affects the growth of leaf petioles, flower pedicels, and anther filaments. Flowers show reduced elongation of the three outer whorls and altered gynoecia with irregular carpel surfaces and enlarged repla. Ectopic stigma-like structures develop from medial and basal parts of the replum. TCP15-EAR produces an increase in expression of the boundary-specific genes LOB, CUC1, and CUC2. Changes in CUC1 and CUC2 expression can be explained by the existence of lower levels of miR164 in leaves and the repression of IAA3/SHY2 and the SAUR-like gene At1g29460 in leaves and flowers. TCP15 binds to the promoter regions of IAA3/SHY2 and At1g29460, suggesting that these genes may be direct targets of the transcription factor. The results indicate that TCP15 regulates the expression of boundary-specific genes through a pathway that affects auxin homeostasis and partially overlaps with the one modulated by class II CIN-like TCP proteins.


Biomolecular Concepts | 2013

TCP transcription factors: architectures of plant form

Nora G. Uberti Manassero; Ivana L. Viola; Elina Welchen; Daniel H. Gonzalez

Abstract After its initial definition in 1999, the TCP family of transcription factors has become the focus of a multiplicity of studies related with plant development at the cellular, organ, and tissue levels. Evidence has accumulated indicating that TCP transcription factors are the main regulators of plant form and architecture and constitute a tool through which evolution shapes plant diversity. The TCP transcription factors act in a multiplicity of pathways related with cell proliferation and hormone responses. In recent years, the molecular pathways of TCP protein action and biochemical studies on their mode of interaction with DNA have begun to shed light on their mechanism of action. However, the available information is fragmented and a unifying view of TCP protein action is lacking, as well as detailed structural studies of the TCP-DNA complex. Also important, the possible role of TCP proteins as integrators of plant developmental responses to the environment has deserved little attention. In this review, we summarize the current knowledge about the structure and functions of TCP transcription factors and analyze future perspectives for the study of the role of these proteins and their use to modify plant development.


Plant Physiology | 2013

Redox Modulation of Plant Developmental Regulators from the Class I TCP Transcription Factor Family

Ivana L. Viola; Leandro N. Güttlein; Daniel H. Gonzalez

The activity of class I TCP transcription factors is modulated by cellular redox agents both in vitro and in vivo, suggesting their role in developmental redox control in plants. TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR1 (TCP) transcription factors participate in plant developmental processes associated with cell proliferation and growth. Most members of class I, one of the two classes that compose the family, have a conserved cysteine at position 20 (Cys-20) of the TCP DNA-binding and dimerization domain. We show that Arabidopsis (Arabidopsis thaliana) class I proteins with Cys-20 are sensitive to redox conditions, since their DNA-binding activity is inhibited after incubation with the oxidants diamide, oxidized glutathione, or hydrogen peroxide or with nitric oxide-producing agents. Inhibition can be reversed by treatment with the reductants dithiothreitol or reduced glutathione or by incubation with the thioredoxin/thioredoxin reductase system. Mutation of Cys-20 in the class I protein TCP15 abolished its redox sensitivity. Under oxidizing conditions, covalently linked dimers were formed, suggesting that inactivation is associated with the formation of intermolecular disulfide bonds. Inhibition of class I TCP protein activity was also observed in vivo, in yeast (Saccharomyces cerevisiae) cells expressing TCP proteins and in plants after treatment with redox agents. This inhibition was correlated with modifications in the expression of the downstream CUC1 gene in plants. Modeling studies indicated that Cys-20 is located at the dimer interface near the DNA-binding surface. This places this residue in the correct orientation for intermolecular disulfide bond formation and explains the sensitivity of DNA binding to the oxidation of Cys-20. The redox properties of Cys-20 and the observed effects of cellular redox agents both in vitro and in vivo suggest that class I TCP protein action is under redox control in plants.


Plant Physiology | 2013

The Impact of the Long-Distance Transport of a BEL1-Like Messenger RNA on Development

Tian Lin; Pooja Sharma; Daniel H. Gonzalez; Ivana L. Viola; David J. Hannapel

Summary: Through regulation by light, a mobile mRNA of potato is involved in controlling processes of growth and in mediating the activation of its own gene. BEL1- and KNOTTED1-type proteins are transcription factors from the three-amino-loop-extension superclass that interact in a tandem complex to regulate the expression of target genes. In potato (Solanum tuberosum), StBEL5 and its Knox protein partner regulate tuberization by targeting genes that control growth. RNA movement assays demonstrated that StBEL5 transcripts move through the phloem to stolon tips, the site of tuber induction. StBEL5 messenger RNA originates in the leaf, and its movement to stolons is induced by a short-day photoperiod. Here, we report the movement of StBEL5 RNA to roots correlated with increased growth, changes in morphology, and accumulation of GA2-oxidase1, YUCCA1a, and ISOPENTENYL TRANSFERASE transcripts. Transcription of StBEL5 in leaves is induced by light but insensitive to photoperiod, whereas in stolon tips growing in the dark, promoter activity is enhanced by short days. The heterodimer of StBEL5 and POTH1, a KNOTTED1-type transcription factor, binds to a tandem TTGAC-TTGAC motif that is essential for regulating transcription. The discovery of an inverted tandem motif in the StBEL5 promoter with TTGAC motifs on opposite strands may explain the induction of StBEL5 promoter activity in stolon tips under short days. Using transgenic potato lines, deletion of one of the TTGAC motifs from the StBEL5 promoter results in the reduction of GUS activity in new tubers and roots. Gel-shift assays demonstrate BEL5/POTH1 binding specificity to the motifs present in the StBEL5 promoter and a double tandem motif present in the StGA2-oxidase1 promoter. These results suggest that, in addition to tuberization, the movement of StBEL5 messenger RNA regulates other aspects of vegetative development.


Frontiers in Plant Science | 2014

Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements

Elina Welchen; Lucila García; Natanael Mansilla; Daniel H. Gonzalez

Plant mitochondria are complex organelles that carry out numerous metabolic processes related with the generation of energy for cellular functions and the synthesis and degradation of several compounds. Mitochondria are semiautonomous and dynamic organelles changing in shape, number, and composition depending on tissue or developmental stage. The biogenesis of functional mitochondria requires the coordination of genes present both in the nucleus and the organelle. In addition, due to their central role, all processes held inside mitochondria must be finely coordinated with those in other organelles according to cellular demands. Coordination is achieved by transcriptional control of nuclear genes encoding mitochondrial proteins by specific transcription factors that recognize conserved elements in their promoter regions. In turn, the expression of most of these transcription factors is linked to developmental and environmental cues, according to the availability of nutrients, light–dark cycles, and warning signals generated in response to stress conditions. Among the signals impacting in the expression of nuclear genes, retrograde signals that originate inside mitochondria help to adjust mitochondrial biogenesis to organelle demands. Adding more complexity, several nuclear encoded proteins are dual localized to mitochondria and either chloroplasts or the nucleus. Dual targeting might establish a crosstalk between the nucleus and cell organelles to ensure a fine coordination of cellular activities. In this article, we discuss how the different levels of coordination of mitochondrial biogenesis interconnect to optimize the function of the organelle according to both internal and external demands.


Biochimica et Biophysica Acta | 2012

Lack of cytochrome c in Arabidopsis decreases stability of Complex IV and modifies redox metabolism without affecting Complexes I and III

Elina Welchen; Tatjana M. Hildebrandt; Dagmar Lewejohann; Daniel H. Gonzalez; Hans-Peter Braun

We studied the role of cytochrome c (CYTc), which mediates electron transfer between Complexes III and IV, in cellular events related with mitochondrial respiration, plant development and redox homeostasis. We analyzed single and double homozygous mutants in both CYTc-encoding genes from Arabidopsis: CYTC-1 and CYTC-2. While individual mutants were similar to wild-type, knock-out of both genes produced an arrest of embryo development, showing that CYTc function is essential at early stages of plant development. Mutants in which CYTc levels were extremely reduced respective to wild-type had smaller rosettes with a pronounced decrease in parenchymatic cell size and an overall delay in development. Mitochondria from these mutants had lower respiration rates and a relative increase in alternative respiration. Furthermore, the decrease in CYTc severely affected the activity and the amount of Complex IV, without affecting Complexes I and III. Reactive oxygen species levels were reduced in these mutants, which showed induction of genes encoding antioxidant enzymes. Ascorbic acid levels were not affected, suggesting that a small amount of CYTc is enough to support its normal synthesis. We postulate that, in addition to its role as an electron carrier between Complexes III and IV, CYTc influences Complex IV levels in plants, probably reflecting a role of this protein in Complex IV stability. This double function of CYTc most likely explains why it is essential for plant survival.

Collaboration


Dive into the Daniel H. Gonzalez's collaboration.

Top Co-Authors

Avatar

Elina Welchen

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ivana L. Viola

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Raquel L. Chan

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carlos S. Andreo

National University of Rosario

View shared research outputs
Top Co-Authors

Avatar

Raúl N. Comelli

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Graciela C. Curi

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Lucila García

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alberto A. Iglesias

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carolina V. Attallah

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Diana Gras

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge