Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Hennes is active.

Publication


Featured researches published by Daniel Hennes.


Journal of Artificial Intelligence Research | 2015

Evolutionary dynamics of multi-agent learning: a survey

Daan Bloembergen; Karl Tuyls; Daniel Hennes; Michael Kaisers

The interaction of multiple autonomous agents gives rise to highly dynamic and nondeterministic environments, contributing to the complexity in applications such as automated financial markets, smart grids, or robotics. Due to the sheer number of situations that may arise, it is not possible to foresee and program the optimal behaviour for all agents beforehand. Consequently, it becomes essential for the success of the system that the agents can learn their optimal behaviour and adapt to new situations or circumstances. The past two decades have seen the emergence of reinforcement learning, both in single and multi-agent settings, as a strong, robust and adaptive learning paradigm. Progress has been substantial, and a wide range of algorithms are now available. An important challenge in the domain of multi-agent learning is to gain qualitative insights into the resulting system dynamics. In the past decade, tools and methods from evolutionary game theory have been successfully employed to study multi-agent learning dynamics formally in strategic interactions. This article surveys the dynamical models that have been derived for various multi-agent reinforcement learning algorithms, making it possible to study and compare them qualitatively. Furthermore, new learning algorithms that have been introduced using these evolutionary game theoretic tools are reviewed. The evolutionary models can be used to study complex strategic interactions. Examples of such analysis are given for the domains of automated trading in stock markets and collision avoidance in multi-robot systems. The paper provides a roadmap on the progress that has been achieved in analysing the evolutionary dynamics of multi-agent learning by highlighting the main results and accomplishments.


intelligent robots and systems | 2012

Collision avoidance under bounded localization uncertainty

Daniel Claes; Daniel Hennes; Karl Tuyls; Wim Meeussen

We present a multi-mobile robot collision avoidance system based on the velocity obstacle paradigm. Current positions and velocities of surrounding robots are translated to an efficient geometric representation to determine safe motions. Each robot uses on-board localization and local communication to build the velocity obstacle representation of its surroundings. Our close and error-bounded convex approximation of the localization density distribution results in collision-free paths under uncertainty. While in many algorithms the robots are approximated by circumscribed radii, we use the convex hull to minimize the overestimation in the footprint. Results show that our approach allows for safe navigation even in densely packed environments.


intelligent robots and systems | 2011

Hierarchies of octrees for efficient 3D mapping

Kai M. Wurm; Daniel Hennes; Dirk Holz; Radu Bogdan Rusu; Cyrill Stachniss; Kurt Konolige; Wolfram Burgard

In this paper, we present a novel multi-resolution approach to efficiently mapping 3D environments. Our representation models the environment as a hierarchy of probabilistic 3D maps, in which each submap is updated and transformed individually. In addition to the formal description of the approach, we present an implementation for tabletop manipulation tasks and an information-driven exploration algorithm for autonomously building a hierarchical map from sensor data. We evaluate our approach using real-world as well as simulated data. The results demonstrate that our method is able to efficiently represent 3D environments at high levels of detail. Compared to a monolithic approach, our maps can be generated significantly faster while requiring significantly less memory.


international conference on unmanned aircraft systems | 2013

OctoSLAM: A 3D mapping approach to situational awareness of unmanned aerial vehicles

Joscha Fossel; Daniel Hennes; Daniel Claes; Sjriek Alers; Karl Tuyls

The focus of this paper is on situational awareness of airborne agents capable of 6D motion, in particular multi-rotor UAVs. We propose the fusion of 2D laser range finder, altitude, and attitude sensor data in order to perform simultaneous localization and mapping (SLAM) indoors. In contrast to other planar 2D laser range finder based SLAM approaches, we perform SLAM on a 3D instead of a 2D map. To represent the 3D environment an octree based map is used. Our scan registration algorithm is derived from Hector SLAM. We evaluate the performance of our system in simulation and on a real multirotor UAV equipped with a 2D laser range finder, inertial measurement unit, and altitude sensor. The results show significant improvement in the localization and representation accuracy over current 2D map SLAM methods. The system is implemented using Willow Garages robot operating system.


genetic and evolutionary computation conference | 2015

Evolving Solutions to TSP Variants for Active Space Debris Removal

Dario Izzo; Ingmar Getzner; Daniel Hennes; Luís F. Simões

The space close to our planet is getting more and more polluted. Orbiting debris are posing an increasing threat to operational orbits and the cascading effect, known as Kessler syndrome, may result in a future where the risk of orbiting our planet at some altitudes will be unacceptable. Many argue that the debris density at the Low Earth Orbit (LEO) has already reached a level sufficient to trigger such a cascading effect. An obvious consequence is that we may soon have to actively clean space from debris. Such a space mission will involve a complex combinatorial decision as to choose which debris to remove and in what order. In this paper, we find that this part of the design of an active debris removal mission (ADR) can be mapped into increasingly complex variants to the classic Travelling Salesman Problem (TSP) and that they can be solved by the Inver-over algorithm improving the current state-of-the-art in ADR mission design. We define static and dynamic cases, according to whether we consider the debris orbits as fixed in time or subject to orbital perturbations. We are able, for the first time, to select optimally objects from debris clouds of considerable size: hundreds debris pieces considered while previous works stopped at tens.


cooperative information agents | 2007

Multi-agent Learning Dynamics: A Survey

H. Jaap van den Herik; Daniel Hennes; Michael Kaisers; Karl Tuyls; Katja Verbeeck

In this paper we compare state-of-the-art multi-agent reinforcement learning algorithms in a wide variety of games. We consider two types of algorithms: value iteration and policy iteration. Four characteristics are studied: initial conditions, parameter settings, convergence speed, and local versus global convergence. Global convergence is still difficult to achieve in practice, despite existing theoretical guarantees. Multiple visualizations are included to provide a comprehensive insight into the learning dynamics.


arXiv: Space Physics | 2016

Designing Complex Interplanetary Trajectories for the Global Trajectory Optimization Competitions

Dario Izzo; Daniel Hennes; Luís F. Simões; Marcus Märtens

The design of interplanetary trajectories often involves a preliminary search for options later refined/assembled into one final trajectory. It is this broad search that, often being intractable, inspires the international event called Global Trajectory Optimization Competition. In the first part of this chapter, we introduce some fundamental problems of space flight mechanics, building blocks of any attempt to participate successfully in these competitions, and we describe the use of the open source software PyKEP to solve them. In the second part, we formulate an instance of a multiple asteroid rendezvous problem, related to the 7th edition of the competition, and we show step by step how to build a possible solution strategy. In doing so, we introduce two new techniques useful in the design of this particular mission type: the use of an asteroid phasing value and its surrogates and the efficient computation of asteroid clusters. We show how the basic building blocks, sided to these innovative ideas, allow designing an effective global search for possible trajectories.


genetic and evolutionary computation conference | 2015

Novelty Search for Soft Robotic Space Exploration

Georgios Methenitis; Daniel Hennes; Dario Izzo; A. Visser

The use of soft robots in future space exploration is still a far-fetched idea, but an attractive one. Soft robots are inherently compliant mechanisms that are well suited for locomotion on rough terrain as often faced in extra-planetary environments. Depending on the particular application and requirements, the best shape (or body morphology) and locomotion strategy for such robots will vary substantially. Recent developments in soft robotics and evolutionary optimization showed the possibility to simultaneously evolve the morphology and locomotion strategy in simulated trials. The use of techniques such as generative encoding and neural evolution were key to these findings. In this paper, we improve further on this methodology by introducing the use of a novelty measure during the evolution process. We compare fitness search and novelty search in different gravity levels and we consistently find novelty-based search to perform as good as or better than a fitness--based search, while also delivering a greater variety of designs. We propose a combination of the two techniques using fitness-elitism in novelty search to obtain a further improvement. We then use our methodology to evolve the gait and morphology of soft robots at different gravity levels, finding a taxonomy of possible locomotion strategies that are analyzed in the context of space-exploration.


adaptive and learning agents | 2015

Trading in markets with noisy information: an evolutionary analysis

Daan Bloembergen; Daniel Hennes; Peter McBurney; Karl Tuyls

We analyse the value of information in a stock market where information can be noisy and costly, using techniques from empirical game theory. Previous work has shown that the value of information follows a J-curve, where averagely informed traders perform below market average, and only insiders prevail. Here we show that both noise and cost can change this picture, in several cases leading to opposite results where insiders perform below market average, and averagely informed traders prevail. Moreover, we investigate the effect of random explorative actions on the market dynamics, showing how these lead to a mix of traders being sustained in equilibrium. These results provide insight into the complexity of real marketplaces, and show under which conditions a broad mix of different trading strategies might be sustainable.


genetic and evolutionary computation conference | 2012

Evolutionary advantage of foresight in markets

Daniel Hennes; Daan Bloembergen; Michael Kaisers; Karl Tuyls; Simon Parsons

We analyze the competitive advantage of price signal information for traders in simulated double auctions. Previous work has established that more information about the price development does not guarantee higher performance. In particular, traders with limited information perform below market average and are outperformed by random traders; only insiders beat the market. However, this result has only been shown in markets with a few traders and a uniform distribution over information levels. We present additional simulations of several more realistic information distributions, extending previous findings. In addition, we analyze the market dynamics with an evolutionary model of competing information levels. Results show that the highest information level will dominate if information comes for free. If information is costly, less-informed traders may prevail reflecting a more realistic distribution over information levels.

Collaboration


Dive into the Daniel Hennes's collaboration.

Top Co-Authors

Avatar

Karl Tuyls

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge