Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J.A. Johansson is active.

Publication


Featured researches published by Daniel J.A. Johansson.


Environmental Research Letters | 2013

Meeting global temperature targets?the role of bioenergy with carbon capture and storage

Christian Azar; Daniel J.A. Johansson; Niclas Mattsson

In order to meet stringent temperature targets, active removal of CO2 from the atmosphere may be required in the long run. Such negative emissions can be materialized when well-performing bioenergy systems are combined with carbon capture and storage (BECCS). Here, we develop an integrated global energy system and climate model to evaluate the role of BECCS in reaching ambitious temperature targets. We present emission, concentration and temperature pathways towards 1.5 and 2 C targets. Our model results demonstrate that BECCS makes it feasible to reach temperature targets that are otherwise out of reach, provided that a temporary overshoot of the target is accepted. Additionally, stringent temperature targets can be met at considerably lower cost if BECCS is available. However, the economic benefit of BECCS nearly vanishes if an overshoot of the temperature target is not allowed. Finally, the least-cost emission pathway over the next 50 years towards a 1.5 C overshoot target with BECCS is almost identical to a pathway leading to a 2 C ceiling target.


Climatic Change | 2012

Economics- and physical-based metrics for comparing greenhouse gases

Daniel J.A. Johansson

A range of alternatives to the Global Warming Potential (GWP) have been suggested in the scientific literature. One of the alternative metrics that has received attention is the cost-effective relative valuation of greenhouse gases, recently denoted Global Cost Potential (GCP). However, this metric is based on complex optimising integrated assessment models that are far from transparent to the general scientist or policymaker. Here we present a new analytic metric, the Cost-Effective Temperature Potential (CETP) which is based on an approximation of the GCP. This new metric is constructed in order to enhance general understanding of the GCP and elucidate the links between physical metrics and metrics that take economics into account. We show that this metric has got similarities with the purely physical metric, Global Temperature change Potential (GTP). However, in contrast with the GTP, the CETP takes the long-term temperature response into account.


Journal of Phycology | 2011

FREQUENT CLONALITY IN FUCOIDS (FUCUS RADICANS AND FUCUS VESICULOSUS; FUCALES, PHAEOPHYCEAE) IN THE BALTIC SEA(1).

Kerstin Johannesson; Daniel J.A. Johansson; Karl H. Larsson; Cecilia J. Huenchuñir; Jens Perus; Helena Forslund; Lena Kautsky; Ricardo T. Pereyra

Asexual reproduction by cloning may affect the genetic structure of populations, their potential to evolve, and, among foundation species, contributions to ecosystem functions. Macroalgae of the genus Fucus are known to produce attached plants only by sexual recruitment. Recently, however, clones of attached plants recruited by asexual reproduction were observed in a few populations of Fucus radicans Bergström et L. Kautsky and F. vesiculosus L. inside the Baltic Sea. Herein we assess the distribution and prevalence of clonality in Baltic fucoids using nine polymorphic microsatellite loci and samples of F. radicans and F. vesiculosus from 13 Baltic sites. Clonality was more common in F. radicans than in F. vesiculosus, and in both species it tended to be most common in northern Baltic sites, although variation among close populations was sometimes extensive. Individual clonal lineages were mostly restricted to single or nearby locations, but one clonal lineage of F. radicans dominated five of 10 populations and was widely distributed over 550 × 100 km of coast. Populations dominated by a few clonal lineages were common in F. radicans, and these were less genetically variable than in other populations. As thalli recruited by cloning produced gametes, a possible explanation for this reduced genetic variation is that dominance of one or a few clonal lineages biases the gamete pool resulting in a decreased effective population size and thereby loss of genetic variation by genetic drift. Baltic fucoids are important habitat‐forming species, and genetic structure and presence of clonality have implications for conservation strategies.


Biodiversity and Conservation | 2013

Genetic biodiversity in the Baltic Sea: species-specific patterns challenge management

Lovisa Wennerström; Linda Laikre; Nils Ryman; Fred M. Utter; Nurul Izza Ab Ghani; Carl André; Jacquelin DeFaveri; Daniel J.A. Johansson; Lena Kautsky; Juha Merilä; Natalia Mikhailova; Ricardo T. Pereyra; Annica Sandström; Amber G. F. Teacher; Roman Wenne; Anti Vasemägi; Małgorzata Zbawicka; Kerstin Johannesson; Craig R. Primmer

Information on spatial and temporal patterns of genetic diversity is a prerequisite to understanding the demography of populations, and is fundamental to successful management and conservation of species. In the sea, it has been observed that oceanographic and other physical forces can constitute barriers to gene flow that may result in similar population genetic structures in different species. Such similarities among species would greatly simplify management of genetic biodiversity. Here, we tested for shared genetic patterns in a complex marine area, the Baltic Sea. We assessed spatial patterns of intraspecific genetic diversity and differentiation in seven ecologically important species of the Baltic ecosystem—Atlantic herring (Clupea harengus), northern pike (Esox lucius), European whitefish (Coregonus lavaretus), three-spined stickleback (Gasterosteus aculeatus), nine-spined stickleback (Pungitius pungitius), blue mussel (Mytilus spp.), and bladderwrack (Fucus vesiculosus). We used nuclear genetic data of putatively neutral microsatellite and SNP loci from samples collected from seven regions throughout the Baltic Sea, and reference samples from North Atlantic areas. Overall, patterns of genetic diversity and differentiation among sampling regions were unique for each species, although all six species with Atlantic samples indicated strong resistence to Atlantic-Baltic gene-flow. Major genetic barriers were not shared among species within the Baltic Sea; most species show genetic heterogeneity, but significant isolation by distance was only detected in pike and whitefish. These species-specific patterns of genetic structure preclude generalizations and emphasize the need to undertake genetic surveys for species separately, and to design management plans taking into consideration the specific structures of each species.


Ecology and Evolution | 2015

Complex spatial clonal structure in the macroalgae Fucus radicans with both sexual and asexual recruitment.

Angelica Ardehed; Daniel J.A. Johansson; Ellen Schagerström; Lena Kautsky; Kerstin Johannesson; Ricardo T. Pereyra

Abstract In dioecious species with both sexual and asexual reproduction, the spatial distribution of individual clones affects the potential for sexual reproduction and local adaptation. The seaweed Fucus radicans, endemic to the Baltic Sea, has separate sexes, but new attached thalli may also form asexually. We mapped the spatial distribution of clones (multilocus genotypes, MLGs) over macrogeographic (>500 km) and microgeographic (<100 m) scales in the Baltic Sea to assess the relationship between clonal spatial structure, sexual recruitment, and the potential for natural selection. Sexual recruitment was predominant in some areas, while in others asexual recruitment dominated. Where clones of both sexes were locally intermingled, sexual recruitment was nevertheless low. In some highly clonal populations, the sex ratio was strongly skewed due to dominance of one or a few clones of the same sex. The two largest clones (one female and one male) were distributed over 100–550 km of coast and accompanied by small and local MLGs formed by somatic mutations and differing by 1–2 mutations from the large clones. Rare sexual events, occasional long‐distance migration, and somatic mutations contribute new genotypic variation potentially available to natural selection. However, dominance of a few very large (and presumably old) clones over extensive spatial and temporal scales suggested that either these have superior traits or natural selection has only been marginally involved in the structuring of genotypes.


Genes, Brain and Behavior | 2013

A study of the possible association between adenosine A2A receptor gene polymorphisms and attention-deficit hyperactivity disorder traits

Yasmina Molero; Clara Hellner Gumpert; Eva Serlachius; Paul Lichtenstein; Hasse Walum; Daniel J.A. Johansson; Henrik Anckarsäter; Lars Westberg; Elias Eriksson; Linda Halldner

The adenosine A2A receptor (ADORA2A) is linked to the dopamine neurotransmitter system and is also implicated in the regulation of alertness, suggesting a potential association with attention‐deficit hyperactivity disorder (ADHD) traits. Furthermore, animal studies suggest that the ADORA2A may influence ADHD‐like behavior. For that reason, the ADORA2A gene emerges as a promising candidate for studying the etiology of ADHD traits. The aim of this study was to examine the relationship between ADORA2A gene polymorphisms and ADHD traits in a large population‐based sample. This study was based on the Child and Adolescent Twin Study in Sweden (CATSS), and included 1747 twins. Attention‐deficit hyperactivity disorder traits were assessed through parental reports, and samples of DNA were collected. Associations between six single nucleotide polymorphisms (SNPs) and ADHD traits were examined, and results suggested a nominal association between ADHD traits and three of these SNPs: rs3761422, rs5751876 and rs35320474. For one of the SNPs, rs35320474, results remained significant after correction for multiple comparisons. These results indicate the possibility that the ADORA2A gene may be involved in ADHD traits. However, more studies replicating the present results are warranted before this association can be confirmed.


Astronomy and Astrophysics | 2005

Probing the cosmic microwave background temperature using the Sunyaev-Zeldovich effect

Cathy Horellou; Martin Nord; Daniel J.A. Johansson; Anna Levy

We discuss the possibility of constraining the relation between redshift and temperature of the cosmic microwave background (CMB) using multifrequency Sunyaev-Zeldovich (SZ) observations. We have simulated a catalog of clusters of galaxies detected through their SZ signature assuming the sensitivities that will be achieved by the Planck satellite at 100, 143 and 353 GHz, taking into account the instrumental noise and the contamination from the Cosmic Infrared Background and from unresolved radiosources. We have parametrized the cosmological temperature-redshift law as T ∝ (1 + z) (1−a) .U sing two sets of SZ flux density ratios (100/143 GHz, which is most sensitive to the parametrization of the T − z law, and 143/353 GHz, which is most sensitive to the peculiar velocities of the clusters) we show that it is possible to recover the T − z law assuming that the temperatures and redshifts of the clusters are known. From a simulated catalog of ∼1200 clusters, the parameter a can be recovered to an accuracy of 10 −2 . Sensitive SZ observations thus appear as a potentially useful tool to test the standard law. Most cosmological models predict a linear variation of the CMB temperature with redshift. The discovery of an alternative law would have profound implications on the cosmological model, implying creation of energy in a manner that would still maintain the black-body shape of the CMB spectrum at redshift zero.


Environmental Research Letters | 2015

Climate metrics and the carbon footprint of livestock products: where’s the beef?

U. Martin Persson; Daniel J.A. Johansson; Christel Cederberg; Fredrik Hedenus; David Bryngelsson

The livestock sector is estimated to account for 15% of global greenhouse gas (GHG) emissions, 80% of which originate from ruminant animal systems due to high emissions of methane (CH4) from enteric fermentation and manure management. However, recent analyses have argued that the carbon footprint (CF) of ruminant meat and dairy products are substantially reduced if one adopts alternative metrics for comparing emissions of GHGs-e.g., the 100 year global temperature change potential (GTP(100)), instead of the commonly used 100 year global warming potential (GWP(100))-due to a lower valuation of CH4 emissions. This raises the question of which metric to use. Ideally, the choice of metric should be related to a climate policy goal. Here, we argue that basing current GHG metrics solely on temperature impact 100 years into the future is inconsistent with the current global climate goal of limiting warming to 2 degrees C, a limit that is likely to be reached well within 100 years. A reasonable GTP value for CH4, accounting for current projections for when 2 degrees C warming will be reached, is about 18, leading to a current CF of 19 kg CO2-eq. per kilo beef (carcass weight, average European system), 20% lower than if evaluated using GWP(100). Further, we show that an application of the GTP metric consistent with a 2 degrees C climate limit leads to the valuation of CH4 increasing rapidly over time as the temperature ceiling is approached. This means that the CF for beef would rise by around 2.5% per year in the coming decades, surpassing the GWP based footprint in only ten years. Consequently, the impact on the livestock sector of substituting GTPs for GWPs would be modest in the near term, but could potentially be very large in the future due to a much higher (>50%) and rapidly appreciating CF.


PLOS ONE | 2016

Divergence within and among Seaweed Siblings (Fucus vesiculosus and F. radicans) in the Baltic Sea.

Angelica Ardehed; Daniel J.A. Johansson; Lisa Sundqvist; Ellen Schagerström; Zuzanna Zagrodzka; Nikolaj A. Kovaltchouk; Lena Bergström; Lena Kautsky; Marina Rafajlović; Ricardo T. Pereyra; Kerstin Johannesson

Closely related taxa provide significant case studies for understanding evolution of new species but may simultaneously challenge species identification and definition. In the Baltic Sea, two dominant and perennial brown algae share a very recent ancestry. Fucus vesiculosus invaded this recently formed postglacial sea 8000 years ago and shortly thereafter Fucus radicans diverged from this lineage as an endemic species. In the Baltic Sea both species reproduce sexually but also recruit fully fertile new individuals by asexual fragmentation. Earlier studies have shown local differences in morphology and genetics between the two taxa in the northern and western Bothnian Sea, and around the island of Saaremaa in Estonia, but geographic patterns seem in conflict with a single origin of F. radicans. To investigate the relationship between northern and Estonian distributions, we analysed the genetic variation using 9 microsatellite loci in populations from eastern Bothnian Sea, Archipelago Sea and the Gulf of Finland. These populations are located in between earlier studied populations. However, instead of bridging the disparate genetic gap between N-W Bothnian Sea and Estonia, as expected from a simple isolation-by-distance model, the new populations substantially increased overall genetic diversity and showed to be strongly divergent from the two earlier analysed regions, showing signs of additional distinct populations. Contrasting earlier findings of increased asexual recruitment in low salinity in the Bothnian Sea, we found high levels of sexual reproduction in some of the Gulf of Finland populations that inhabit extremely low salinity. The new data generated in this study supports the earlier conclusion of two reproductively isolated but very closely related species. However, the new results also add considerable genetic and morphological complexity within species. This makes species separation at geographic scales more demanding and suggests a need for more comprehensive approaches to further disentangle the intriguing relationship and history of the Baltic Sea fucoids.


Journal of Environmental Economics and Policy | 2012

The fossil endgame: strategic oil price discrimination and carbon taxation

Jiegen Wei; Magnus Hennlock; Daniel J.A. Johansson; Thomas Sterner

This paper analyzes how fossil fuel-producing countries can counteract climate policy. We analyze the exhaustion of oil resources and the subsequent transition to a backstop technology as a strategic game between the consumers and producers of oil, which we refer to simply as ‘OECD’ and ‘OPEC’, respectively. The consumers, OECD, derive benefits from oil, but worry about climate effects from carbon dioxide emissions. OECD has two instruments to manage this: it can tax fuel consumption and decide when to switch to a carbon-neutral backstop technology. The tax reduces climate damage and also appropriates some of the resource rent. OPEC retaliates by choosing a strategy of price discrimination, subsidizing oil in its domestic markets. The results show that price discrimination enables OPEC to avoid some of the adverse consequences of OECDs fuel tax and its switch to the backstop technology by consuming a larger share of the oil in its own domestic markets. Our results suggest that persuading fossil exporters to stop subsidizing domestic consumption will be difficult.

Collaboration


Dive into the Daniel J.A. Johansson's collaboration.

Top Co-Authors

Avatar

Christian Azar

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Fredrik Hedenus

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

U. Martin Persson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Wirsenius

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Cathy Horellou

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Kristian Lindgren

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas Sterner

University of Gothenburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge