Daniel J. Cosgrove
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel J. Cosgrove.
Nature | 2000
Daniel J. Cosgrove
Plant cell walls are the starting materials for many commercial products, from lumber, paper and textiles to thickeners, films and explosives. The cell wall is secreted by each cell in the plant body, forming a thin fibreglass-like network with remarkable strength and flexibility. During growth, plant cells secrete a protein called expansin, which unlocks the network of wall polysaccharides, permitting turgor-driven cell enlargement. Germinating grass pollen also secretes an unusual expansin that loosens maternal cell walls to aid penetration of the stigma by the pollen tube. Expansins action has puzzling implications for plant cell-wall structure. The recent explosion of gene sequences and expression data has given new hints of additional biological functions for expansins.
The Plant Cell | 1997
Daniel J. Cosgrove
SUMMARY AND PERSPECTIVE The enlargement of plant cells involves the coordinate con- trol of wall synthesis and expansion, solute and water trans- port, membrane synthesis, Golgi secretion, ion transport, and many other processes. In this review, I have focused on the wall because it is the major control point for cell enlarge- ment. Some of the key processes that may be involved in wall enlargement are summarized in Figure 4. I offer the following speculative picture as a tentative working model for the control of wall expansion. The primary wall is initially secreted and assembled in a form that is me- chanically tough yet has “hot spots” where expansin can weaken microfibril-matrix adhesion. Expansin activity, which is modulated both by secretion of the protein to the wall and by changes in the pH and redox potential of the wall, in- duces the stress relaxation and polymer creep needed for wall enlargement and water uptake by the cell. By altering Synthesis & secretion secretion of wall polysaccharides and proteins
Plant Physiology and Biochemistry | 2000
Daniel J. Cosgrove
The enlargement of plant cell walls is a key determinant of plant morphogenesis. Current models of the cell wall are reviewed with respect to their ability to account for the mechanism of cell wall enlargement. The concept of primary and secondary wall loosening agents is presented, and the possible roles of expansins, xyloglucan endotransglycosylase, endo-1,4-beta-D-glucanase, and wall synthesis in the process of cell wall enlargement are reviewed and critically evaluated. Experimental results indicate that cell wall enlargement may be regulated at many levels.
Plant Physiology | 1995
Simon Mcqueen-Mason; Daniel J. Cosgrove
The biochemical mechanisms underlying cell wall expansion in plants have long been a matter of conjecture. Previous work in our laboratory identified two proteins (named “expansins”) that catalyze the acid-induced extension of isolated cucumber cell walls. Here we examine the mechanism of expansin action with three approaches. First, we report that expansins did not alter the molecular mass distribution or the viscosity of solutions of matrix polysaccharides. We conclude that expansins do not hydrolyze the major pectins or hemicelluloses of the cucumber wall. Second, we investigated the effects of expansins on stress relaxation of isolated walls. These studies show that expansins account for the pH-sensitive and heat-labile components of wall stress relaxation. In addition, these experiments show that expansins do not cause a progressive weakening of the walls, as might be expected from the action of a hydrolase. Third, we studied the binding of expansins to the cell wall and its components. The binding characteristics are consistent with this being the site of expansin action. We found that expansins bind weakly to crystalline cellulose but that this binding is greatly increased upon coating the cellulose with various hemicelluloses. Xyloglucan, either solubilized or as a coating on cellulose microfibrils, was not very effective as a binding substrate. Expansins were present in growing cell walls in low quantities (approximately 1 part in 5000 on a dry weight basis), suggesting that they function catalytically. We conclude that expansins bind at the interface between cellulose microfibrils and matrix polysaccharides in the wall and induce extension by reversibly disrupting noncovalent bonds within this polymeric network. Our results suggest that a minor structural component of the matrix, other than pectin and xyloglucan, plays an important role in expansin binding to the wall and, presumably, in expansin action.
The Plant Cell | 2002
Hyung-Taeg Cho; Daniel J. Cosgrove
The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of these expansin genes. The effects of exogenous auxin and root separation on root hair formation required the ethylene signaling pathway. By contrast, blocking the endogenous ethylene pathway, either by genetic mutations or by a chemical inhibitor, did not affect normal root hair formation and expansin gene expression. These results indicate that the normal developmental pathway for root hair formation (i.e., not induced by external stimuli) is independent of the ethylene pathway. Promoter analyses of the expansin genes show that the same promoter elements that determine cell specificity also determine inducibility by ethylene, auxin, and root separation. Our study suggests that two distinctive signaling pathways, one developmental and the other environmental/hormonal, converge to modulate the initiation of the root hair and the expression of its specific expansin gene set.
Plant Physiology | 1993
Daniel J. Cosgrove
This article briefly summarizes recent work that identifies the biophysical and biochemical processes that give rise to the extension of plant cell walls. I begin with the biophysical notion of stress relaxation of the wall and follow with recent studies of wall enzymes thought to catalyze wall extension and relaxation. Readers should refer to detailed reviews for more comprehensive discussion of earlier literature (Taiz, 1984; Carpita and Gibeaut, 1993; Cosgrove, 1993).
Plant Physiology | 1996
Yajun Wu; Robert E. Sharp; Daniel M. Durachko; Daniel J. Cosgrove
Previous work on the growth biophysics of maize (Zea mays L.) primary roots suggested that cell walls in the apical 5 mm of the elongation zone increased their yielding ability as an adaptive response to low turgor and water potential ([psi]W). To test this hypothesis more directly, we measured the acid-induced extension of isolated walls from roots grown at high (-0.03 MPa) or low (-1.6 MPa) [psi]W using an extensometer. Acid-induced extension was greatly increased in the apical 5 mm and was largely eliminated in the 5- to 10-mm region of roots grown at low [psi]W. This pattern is consistent with the maintenance of elongation toward the apex and the shortening of the elongation zone in these roots. Wall proteins extracted from the elongation zone possessed expansin activity, which increased substantially in roots grown at low [psi]W. Western blots likewise indicated higher expansin abundance in the roots at low [psi]W. Additionally, the susceptibility of walls to expansin action was higher in the apical 5 mm of roots at low [psi]W than in roots at high [psi]W. The basal region of the elongation zone (5–10 mm) did not extend in response to expansins, indicating that loss of susceptibility to expansins was associated with growth cessation in this region. Our results indicate that both the increase in expansin activity and the increase in cell-wall susceptibility to expansins play a role in enhancing cell-wall yielding and, therefore, in maintaining elongation in the apical region of maize primary roots at low [psi]W.
Plant Physiology | 2012
Yong Bum Park; Daniel J. Cosgrove
Xyloglucan is widely believed to function as a tether between cellulose microfibrils in the primary cell wall, limiting cell enlargement by restricting the ability of microfibrils to separate laterally. To test the biomechanical predictions of this “tethered network” model, we assessed the ability of cucumber (Cucumis sativus) hypocotyl walls to undergo creep (long-term, irreversible extension) in response to three family-12 endo-β-1,4-glucanases that can specifically hydrolyze xyloglucan, cellulose, or both. Xyloglucan-specific endoglucanase (XEG from Aspergillus aculeatus) failed to induce cell wall creep, whereas an endoglucanase that hydrolyzes both xyloglucan and cellulose (Cel12A from Hypocrea jecorina) induced a high creep rate. A cellulose-specific endoglucanase (CEG from Aspergillus niger) did not cause cell wall creep, either by itself or in combination with XEG. Tests with additional enzymes, including a family-5 endoglucanase, confirmed the conclusion that to cause creep, endoglucanases must cut both xyloglucan and cellulose. Similar results were obtained with measurements of elastic and plastic compliance. Both XEG and Cel12A hydrolyzed xyloglucan in intact walls, but Cel12A could hydrolyze a minor xyloglucan compartment recalcitrant to XEG digestion. Xyloglucan involvement in these enzyme responses was confirmed by experiments with Arabidopsis (Arabidopsis thaliana) hypocotyls, where Cel12A induced creep in wild-type but not in xyloglucan-deficient (xxt1/xxt2) walls. Our results are incompatible with the common depiction of xyloglucan as a load-bearing tether spanning the 20- to 40-nm spacing between cellulose microfibrils, but they do implicate a minor xyloglucan component in wall mechanics. The structurally important xyloglucan may be located in limited regions of tight contact between microfibrils.
Planta | 1989
Daniel J. Cosgrove
Walls from frozen-thawed cucumber (Cucumis sativus L.) hypocotyls extend for many hours when placed in tension under acidic conditions. This study examined whether such “creep” is a purely physical process dependent on wall viscoelasticity alone or whether enzymatic activities are needed to maintain wall extension. Chemical denaturants inhibited wall creep, some acting reversibly and others irreversibly. Brief (15 s) boiling in water irreversibly inhibited creep, as did pre-incubation with proteases. Creep exhibited a high Q10 (3.8) between 20° and 30°C, with slow inactivation at higher temperatures, whereas the viscous flow of pectin solutions exhibited a much lower Q10 (1.35). On the basis of its temperature sensitivity, involvement of pectic gel-sol transitions was judged to be of little importance in creep. Pre-incubation of walls in neutral pH irreversibly inactivated their ability to creep, with a half-time of about 40 min. At 1 mM, Cu2+, Hg2+ and Al3+ were strongly inhibitory whereas most other cations, including Ca2+, had little effect. Sulfhydryl-reducing agents strongly stimulated creep, apparently by stabilizing wall enzyme(s). The physical effects of these treatments on polymer interactions were examined by Instron and stress-relaxation analyses. Some treatments, such as pH and Cu2+, had significant effects on wall viscoelasticity, but others had little or no apparent effect, thus implicating an enzymatic creep mechanism. The results indicate that creep depends on relatively rugged enzymes that are firmly attached to or entangled in the wall. The sensitivity of creep to SH-reducing agents indicates that thiol reduction of wall enzymes might provide a control mechanism for endogenous cell growth.
Current Opinion in Plant Biology | 2000
Daniel J. Cosgrove
Expansins are extracellular proteins that loosen plant cell walls in novel ways. They are thought to function in cell enlargement, pollen tube invasion of the stigma (in grasses), wall disassembly during fruit ripening, abscission and other cell separation events. Expansins are encoded by two multigene families and each gene is often expressed in highly specific locations and cell types. Structural analysis indicates that one expansin region resembles the catalytic domain of family-45 endoglucanases but glucanase activity has not been detected. The genome projects have revealed numerous expansin-related sequences but their putative wall-loosening functions remain to be assessed.