Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J. Driscoll is active.

Publication


Featured researches published by Daniel J. Driscoll.


Genetics in Medicine | 2011

Prader-Willi syndrome

Suzanne B. Cassidy; Stuart Schwartz; Jennifer L. Miller; Daniel J. Driscoll

Prader-Willi syndrome is characterized by severe infantile hypotonia with poor suck and failure to thrive; hypogonadism causing genital hypoplasia and pubertal insufficiency; characteristic facial features; early-childhood onset obesity and hyperphagia; developmental delay/mild intellectual disability; short stature; and a distinctive behavioral phenotype. Sleep abnormalities and scoliosis are common. Growth hormone insufficiency is frequent, and replacement therapy provides improvement in growth, body composition, and physical attributes. Management is otherwise largely supportive. Consensus clinical diagnostic criteria exist, but diagnosis should be confirmed through genetic testing. Prader-Willi syndrome is due to absence of paternally expressed imprinted genes at 15q11.2-q13 through paternal deletion of this region (65–75% of individuals), maternal uniparental disomy 15 (20–30%), or an imprinting defect (1–3%). Parent-specific DNA methylation analysis will detect >99% of individuals. However, additional genetic studies are necessary to identify the molecular class. There are multiple imprinted genes in this region, the loss of which contribute to the complete phenotype of Prader-Willi syndrome. However, absence of a small nucleolar organizing RNA gene, SNORD116, seems to reproduce many of the clinical features. Sibling recurrence risk is typically <1%, but higher risks may pertain in certain cases. Prenatal diagnosis is available.Genet Med 2012:14(1):10–26.


European Journal of Human Genetics | 2009

Prader–Willi syndrome

Suzanne B. Cassidy; Daniel J. Driscoll

Prader–Willi syndrome (PWS) is a highly variable genetic disorder affecting multiple body systems whose most consistent major manifestations include hypotonia with poor suck and poor weight gain in infancy; mild mental retardation, hypogonadism, growth hormone insufficiency causing short stature for the family, early childhood-onset hyperphagia and obesity, characteristic appearance, and behavioral and sometimes psychiatric disturbance. Many more minor characteristics can be helpful in diagnosis and important in management. PWS is an example of a genetic condition involving genomic imprinting. It can occur by three main mechanisms, which lead to absence of expression of paternally inherited genes in the 15q11.2–q13 region: paternal microdeletion, maternal uniparental disomy, and imprinting defect.Prader-Willi syndrome (PWS) is a highly variable genetic disorder affecting multiple body systems whose most consistent major manifestations include hypotonia with poor suck and poor weight gain in infancy; mild mental retardation, hypogonadism, growth hormone insufficiency causing short stature for the family, early childhood-onset hyperphagia and obesity, characteristic appearance, and behavioral and sometimes psychiatric disturbance. Many more minor characteristics can be helpful in diagnosis and important in management. PWS is an example of a genetic condition involving genomic imprinting. It can occur by three main mechanisms, which lead to absence of expression of paternally inherited genes in the 15q11.2-q13 region: paternal microdeletion, maternal uniparental disomy, and imprinting defect.


Journal of Medical Genetics | 2001

Distinct phenotypes distinguish the molecular classes of Angelman syndrome

Amy Lossie; M M Whitney; D Amidon; H J Dong; P Chen; Douglas W. Theriaque; Alan D. Hutson; Robert D. Nicholls; Roberto T. Zori; Charles A. Williams; Daniel J. Driscoll

BACKGROUND Angelman syndrome (AS) is a severe neurobehavioural disorder caused by defects in the maternally derived imprinted domain located on 15q11-q13. Most patients acquire AS by one of five mechanisms: (1) a large interstitial deletion of 15q11-q13; (2) paternal uniparental disomy (UPD) of chromosome 15; (3) an imprinting defect (ID); (4) a mutation in the E3 ubiquitin protein ligase gene (UBE3A); or (5) unidentified mechanism(s). All classical patients from these classes exhibit four cardinal features, including severe developmental delay and/or mental retardation, profound speech impairment, a movement and balance disorder, and AS specific behaviour typified by an easily excitable personality with an inappropriately happy affect. In addition, patients can display other characteristics, including microcephaly, hypopigmentation, and seizures. METHODS We restricted the present study to 104 patients (93 families) with a classical AS phenotype. All of our patients were evaluated for 22 clinical variables including growth parameters, acquisition of motor skills, and history of seizures. In addition, molecular and cytogenetic analyses were used to assign a molecular class (I-V) to each patient for genotype-phenotype correlations. RESULTS In our patient repository, 22% of our families had normal DNA methylation analyses along 15q11-q13. Of these, 44% of sporadic patients had mutations withinUBE3A, the largest percentage found to date. Our data indicate that the five molecular classes can be divided into four phenotypic groups: deletions, UPD and ID patients,UBE3A mutation patients, and subjects with unknown aetiology. Deletion patients are the most severely affected, while UPD and ID patients are the least. Differences in body mass index, head circumference, and seizure activity are the most pronounced among the classes. CONCLUSIONS Clinically, we were unable to distinguish between UPD and ID patients, suggesting that 15q11-q13 contains the only significant maternally expressed imprinted genes on chromosome 15.


American Journal of Human Genetics | 2009

Genomic and Genic Deletions of the FOX Gene Cluster on 16q24.1 and Inactivating Mutations of FOXF1 Cause Alveolar Capillary Dysplasia and Other Malformations

Pawel Stankiewicz; Partha Sen; Samarth Bhatt; Mekayla Storer; Zhilian Xia; Bassem A. Bejjani; Zhishuo Ou; Joanna Wiszniewska; Daniel J. Driscoll; Juan Bolivar; Mislen Bauer; Elaine H. Zackai; Donna M. McDonald-McGinn; Małgorzata M.J. Nowaczyk; Mitzi L. Murray; Tamim H. Shaikh; Vicki Martin; Matthew Tyreman; Ingrid Simonic; Lionel Willatt; Joan Paterson; Sarju G. Mehta; Diana Rajan; Tomas Fitzgerald; Susan M. Gribble; Elena Prigmore; Ankita Patel; Lisa G. Shaffer; Nigel P. Carter; Sau Wai Cheung

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a rare, neonatally lethal developmental disorder of the lung with defining histologic abnormalities typically associated with multiple congenital anomalies (MCA). Using array CGH analysis, we have identified six overlapping microdeletions encompassing the FOX transcription factor gene cluster in chromosome 16q24.1q24.2 in patients with ACD/MPV and MCA. Subsequently, we have identified four different heterozygous mutations (frameshift, nonsense, and no-stop) in the candidate FOXF1 gene in unrelated patients with sporadic ACD/MPV and MCA. Custom-designed, high-resolution microarray analysis of additional ACD/MPV samples revealed one microdeletion harboring FOXF1 and two distinct microdeletions upstream of FOXF1, implicating a position effect. DNA sequence analysis revealed that in six of nine deletions, both breakpoints occurred in the portions of Alu elements showing eight to 43 base pairs of perfect microhomology, suggesting replication error Microhomology-Mediated Break-Induced Replication (MMBIR)/Fork Stalling and Template Switching (FoSTeS) as a mechanism of their formation. In contrast to the association of point mutations in FOXF1 with bowel malrotation, microdeletions of FOXF1 were associated with hypoplastic left heart syndrome and gastrointestinal atresias, probably due to haploinsufficiency for the neighboring FOXC2 and FOXL1 genes. These differences reveal the phenotypic consequences of gene alterations in cis.


American Journal of Human Genetics | 1999

Chromosome Breakage in the Prader-Willi and Angelman Syndromes Involves Recombination between Large, Transcribed Repeats at Proximal and Distal Breakpoints

James M. Amos-Landgraf; Yonggang Ji; Wayne Gottlieb; Theresa W. Depinet; Amy E. Wandstrat; Suzanne B. Cassidy; Daniel J. Driscoll; Peter K. Rogan; Stuart Schwartz; Robert D. Nicholls

Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct neurobehavioral disorders that most often arise from a 4-Mb deletion of chromosome 15q11-q13 during paternal or maternal gametogenesis, respectively. At a de novo frequency of approximately.67-1/10,000 births, these deletions represent a common structural chromosome change in the human genome. To elucidate the mechanism underlying these events, we characterized the regions that contain two proximal breakpoint clusters and a distal cluster. Novel DNA sequences potentially associated with the breakpoints were positionally cloned from YACs within or near these regions. Analyses of rodent-human somatic-cell hybrids, YAC contigs, and FISH of normal or rearranged chromosomes 15 identified duplicated sequences (the END repeats) at or near the breakpoints. The END-repeat units are derived from large genomic duplications of a novel gene (HERC2), many copies of which are transcriptionally active in germline tissues. One of five PWS/AS patients analyzed to date has an identifiable, rearranged HERC2 transcript derived from the deletion event. We postulate that the END repeats flanking 15q11-q13 mediate homologous recombination resulting in deletion. Furthermore, we propose that active transcription of these repeats in male and female germ cells may facilitate the homologous recombination process.


Genomics | 1992

A DNA methylation imprint, determined by the sex of the parent, distinguishes the Angelman and Prader-Willi syndromes

Daniel J. Driscoll; Michael F. Waters; Charles A. Williams; Roberto T. Zori; Christopher C. Glenn; Karen M. Avidano; Robert D. Nicholls

The Angelman (AS) and Prader-Willi (PWS) syndromes are two clinically distinct disorders that are caused by a differential parental origin of chromosome 15q11-q13 deletions. Both also can result from uniparental disomy (the inheritance of both copies of chromosome 15 from only one parent). Loss of the paternal copy of 15q11-q13, whether by deletion or maternal uniparental disomy, leads to PWS, whereas a maternal deletion or paternal uniparental disomy leads to AS. The differential modification in expression of certain mammalian genes dependent upon parental origin is known as genomic imprinting, and AS and PWS represent the best examples of this phenomenon in humans. Although the molecular mechanisms of genomic imprinting are unknown, DNA methylation has been postulated to play a role in the imprinting process. Using restriction digests with the methyl-sensitive enzymes HpaII and HhaI and probing Southern blots with several genomic and cDNA probes, we have systematically scanned segments of 15q11-q13 for DNA methylation differences between patients with PWS (20 deletion, 20 uniparental disomy) and those with AS (26 deletion, 1 uniparental disomy). The highly evolutionarily conserved cDNA, DN34, identifies distinct differences in DNA methylation of the parental alleles at the D15S9 locus. Thus, DNA methylation may be used as a reliable, postnatal diagnostic tool in these syndromes. Furthermore, our findings demonstrate the first known epigenetic event, dependent on the sex of the parent, for a locus within 15q11-q13. We propose that expression of the gene detected by DN34 is regulated by genomic imprinting and, therefore, that it is a candidate gene for PWS and/or AS.


American Journal of Medical Genetics Part A | 2011

Nutritional Phases in Prader–Willi Syndrome

Jennifer L. Miller; Christy H Lynn; Danielle C. Driscoll; Anthony P. Goldstone; June-Anne Gold; Virginia E. Kimonis; Elisabeth M. Dykens; Merlin G. Butler; Jonathan J. Shuster; Daniel J. Driscoll

Prader–Willi syndrome (PWS) is a complex neurobehavioral condition which has been classically described as having two nutritional stages: poor feeding, frequently with failure to thrive (FTT) in infancy (Stage 1), followed by hyperphagia leading to obesity in later childhood (Stage 2). We have longitudinally followed the feeding behaviors of individuals with PWS and found a much more gradual and complex progression of the nutritional phases than the traditional two stages described in the literature. Therefore, this study characterizes the growth, metabolic, and laboratory changes associated with the various nutritional phases of PWS in a large cohort of subjects. We have identified a total of seven different nutritional phases, with five main phases and sub‐phases in phases 1 and 2. Phase 0 occurs in utero, with decreased fetal movements and growth restriction compared to unaffected siblings. In phase 1 the infant is hypotonic and not obese, with sub‐phase 1a characterized by difficulty feeding with or without FTT (ages birth—15 months; median age at completion: 9 months). This phase is followed by sub‐phase 1b when the infant grows steadily along a growth curve and weight is increasing at a normal rate (median age of onset: 9 months; age quartiles 5–15 months). Phase 2 is associated with weight gain—in sub‐phase 2a the weight increases without a significant change in appetite or caloric intake (median age of onset 2.08 years; age quartiles 20–31 months;), while in sub‐phase 2b the weight gain is associated with a concomitant increased interest in food (median age of onset: 4.5 years; quartiles 3–5.25 years). Phase 3 is characterized by hyperphagia, typically accompanied by food‐seeking and lack of satiety (median age of onset: 8 years; quartiles 5–13 years). Some adults progress to phase 4 which is when an individual who was previously in phase 3 no longer has an insatiable appetite and is able to feel full. Therefore, the progression of the nutritional phases in PWS is much more complex than previously recognized. Awareness of the various phases will aid researchers in unraveling the pathophysiology of each phase and provide a foundation for developing rational therapies. Counseling parents of newly diagnosed infants with PWS as to what to expect with regard to these nutritional phases may help prevent or slow the early‐onset of obesity in this syndrome.


Genetics in Medicine | 2010

Clinical and genetic aspects of Angelman syndrome

Charles A. Williams; Daniel J. Driscoll; Aditi I Dagli

Abstract: Angelman syndrome is characterized by severe developmental delay, speech impairment, gait ataxia and/or tremulousness of the limbs, and a unique behavioral phenotype that includes happy demeanor and excessive laughter. Microcephaly and seizures are common. Developmental delays are first noted at 3 to 6 months age, but the unique clinical features of the syndrome do not become manifest until after age 1 year. Management includes treatment of gastrointestinal symptoms, use of antiepileptic drugs for seizures, and provision of physical, occupational, and speech therapy with an emphasis on nonverbal methods of communication. The diagnosis rests on a combination of clinical criteria and molecular and/or cytogenetic testing. Analysis of parent-specific DNA methylation imprints in the 15q11.2-q13 chromosome region detects ∼78% of individuals with lack of maternal contribution. Less than 1% of individuals have a visible chromosome rearrangement. UBE3A sequence analysis detects mutations in an additional 11% of individuals. The remaining 10% of individuals with classic phenotypic features of Angelman syndrome have a presently unidentified genetic mechanism and thus are not amenable to diagnostic testing. The risk to sibs of a proband depends on the genetic mechanism of the loss of the maternally contributed Angelman syndrome/Prader-Willi syndrome region: typically <1% for probands with a deletion or uniparental disomy; as high as 50% for probands with an imprinting defect or a mutation of UBE3A. Members of the mothers extended family are also at increased risk when an imprinting defect or a UBE3A mutation is present. Chromosome rearrangements may be inherited or de novo. Prenatal testing is possible for certain genetic mechanisms.


Journal of Neurology, Neurosurgery, and Psychiatry | 2005

Satiety dysfunction in Prader-Willi syndrome demonstrated by fMRI.

Nathan A. Shapira; Mary Catherine Lessig; Alex G. He; George Andrew James; Daniel J. Driscoll; Yijun Liu

The neurobiology relating to the insatiable appetite observed in Prader-Willi syndrome (PWS) has not been fully characterised. Two functional magnetic resonance imaging (fMRI) scans were performed on each of three adults with PWS. The scans were carried out pre- and post-treatment with the antiepileptic topiramate, which had little effect on body weight and appetite in these subjects. Subjects fasted overnight and drank a 75 g dextrose solution prior to fMRI scans for measurement of brain activation levels during/after glucose ingestion. Following glucose administration, there was a significant delay in activation at the hypothalamus and other brain regions associated with satiety compared with previous data on obese volunteers. These regions include the insula, ventromedial prefrontal cortex, and nucleus accumbens. Individuals with PWS showed a mean latency of 24 min while in a previous study obese volunteers had shown a latency of 15 min and lean volunteers a latency of 10 min in the hypothalamus. Our results provide evidence towards a satiety dysfunction in the central nervous system of PWS patients.


Journal of Neurology, Neurosurgery, and Psychiatry | 2007

Enhanced activation of reward mediating prefrontal regions in response to food stimuli in Prader–Willi syndrome

Jennifer L. Miller; G Andrew James; Anthony P. Goldstone; Jessica A. Couch; Guojun He; Daniel J. Driscoll; Yijun Liu

Background: Individuals with Prader–Willi syndrome (PWS) exhibit severe disturbances in appetite regulation, including delayed meal termination, early return of hunger after a meal, seeking and hoarding food and eating of non-food substances. Brain pathways involved in the control of appetite in humans are thought to include the hypothalamus, frontal cortex (including the orbitofrontal, ventromedial prefrontal, dorsolateral prefrontal and anterior cingulate areas), insula, and limbic and paralimbic areas. We hypothesised that the abnormal appetite in PWS results from aberrant reward processing of food stimuli in these neural pathways. Methods: We compared functional MRI blood oxygen level dependent (BOLD) responses while viewing pictures of food in eight adults with PWS and eight normal weight adults after ingestion of an oral glucose load. Results: Subjects with PWS demonstrated significantly greater BOLD activation in the ventromedial prefrontal cortex than controls when viewing food pictures. No significant differences were found in serum insulin, glucose or triglyceride levels between the groups at the time of the scan. Conclusions: Individuals with PWS had an increased BOLD response in the ventromedial prefrontal cortex compared with normal weight controls when viewing pictures of food after an oral glucose load. These findings suggest that an increased reward value for food may underlie the excessive hunger in PWS, and support the significance of the frontal cortex in modulating the response to food in humans. Our findings in the extreme appetite phenotype of PWS support the importance of the neural pathways that guide reward related behaviour in modulating the response to food in humans.

Collaboration


Dive into the Daniel J. Driscoll's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge