Daniel J. Dumont
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel J. Dumont.
Journal of Clinical Investigation | 1999
Annie Bourdeau; Daniel J. Dumont; Michelle Letarte
Endoglin (CD105), an accessory protein of the TGF-beta receptor superfamily, is highly expressed on endothelial cells. Hereditary hemorrhagic telangiectasia type 1 (HHT1) is associated with mutations in the Endoglin gene, leading to haploinsufficiency. To generate a disease model and ascertain the role of endoglin in development, we generated mice lacking 1 or both copies of the gene. Endoglin null embryos die at gestational day 10.0-10.5 due to defects in vessel and heart development. Vessel formation appears normal until hemorrhage occurs in yolk sacs and embryos. The primitive vascular plexus of the yolk sac fails to mature into defined vessels, and vascular channels dilate and rupture. Internal bleeding is seen in the peritoneal cavity, implying fragile vessels. Heart development is arrested at day 9.0, and the atrioventricular canal endocardium fails to undergo mesenchymal transformation and cushion-tissue formation. These data suggest that endoglin is critical for both angiogenesis and heart valve formation. Some heterozygotes, either with an inbred 129/Ola or mixed C57BL/6-129/Ola background, show signs of HHT, such as telangiectases or recurrent nosebleeds. In this murine model of HHT, it appears that epigenetic factors and modifier genes, some of which are present in 129/Ola, contribute to disease heterogeneity.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Jennifer Tran; Zubin Master; Joanne L. Yu; Janusz Rak; Daniel J. Dumont; Robert S. Kerbel
Although standard anticancer chemotherapeutic drugs have been designed to inhibit the survival or growth of rapidly dividing tumor cells, it is possible to enhance the efficacy of such drugs by targeting the proliferating host endothelial cells (ECs) of the tumor vasculature. A theoretical advantage of this strategy lies in the possibility of circumventing, or significantly delaying, acquired drug resistance driven by the genetic instability of tumor cells. Here, we show that both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor significantly reduce the pro-apoptotic potency of chemotherapy on both micro- and macrovascular ECs. This cytoprotection to drug toxicity was found to be phosphatidylinositol 3-kinase-dependent and could be recapitulated in the absence of VEGF by overexpressing the dominant-active form of the serine/threonine kinase protein kinase B/Akt. Downstream of phosphatidylinositol 3-kinase, we also show that survivin plays a pivotal role in VEGF-mediated EC protection by preserving the microtubule network. In this respect, its induction effectively protects ECs against chemotherapeutic damage, whereas overexpression of its dominant-interfering mutant (C84A) abrogates the protective effects of VEGF. Accordingly, the potency of VEGF as a chemoprotectant was more pronounced with drugs that interfere with microtubule dynamics than those that damage DNA. These studies implicate a role for survivin up-regulation as a novel mechanism of EC drug “resistance” and support the notion that angiogenic factors that induce the expression of survivin may act to shield tumor ECs from the apoptotic effects of chemotherapy. Thus, exploiting chemotherapeutic drugs as antiangiogenics is likely to be compromised by the high concentrations of proangiogenic survival/growth factors present in the tumor microenvironment; targeting EC survival pathways should improve the antiangiogenic efficacy of antineoplastic agents, particularly microtubule-inhibitor drugs.
Nature Reviews Molecular Cell Biology | 2001
Nina Jones; Kristiina Iljin; Daniel J. Dumont; Kari Alitalo
Angiogenesis is required for normal embryonic vascular development and aberrant angiogenesis contributes to several diseases, including cancer, diabetes and tissue ischaemia. What are the molecular mechanisms that regulate this important process? The Tie family of receptors and their ligands, the angiopoietins, are beginning to provide insight into how vessels make decisions such as whether to grow or regress — processes that are important not only during development but throughout an organisms life.
Immunity | 1998
Nobuyuki Takakura; Xu Ling Huang; Takeshi Naruse; Isao Hamaguchi; Daniel J. Dumont; George D. Yancopoulos; Toshio Suda
We have investigated the function of TIE2/TEK receptor tyrosine kinase in the development of definitive hematopoiesis. In the vitelline artery at 9.5 days postcoitum (d.p.c.), TIE2+ hematopoietic cells aggregated and adhered to TIE2+ endothelial cells. Soluble TIE2-Fc chimeric protein inhibited the development of hematopoiesis and angiogenesis in the para-aortic splanchnopleural mesoderm (P-Sp) explant culture, and TIE2-deficient mice showed severely impaired definitive hematopoiesis. An in vitro study revealed that Angiopoietin-1 but not Angiopoietin-2 promoted the adhesion to fibronectin (FN) through integrins in TIE2-transfected cells and primary TIE2+ cells sorted from 9.5 d.p.c. P-Sp. Adhesion of TIE2+ cells induced by Angiopoietin-1 enhanced the proliferation of hematopoietic progenitor cells.
Cardiovascular Research | 2001
Krystyna Teichert-Kuliszewska; Peter C. Maisonpierre; Nina Jones; Andrew Campbell; Zubin Master; Michelle P. Bendeck; Kari Alitalo; Daniel J. Dumont; George D. Yancopoulos; Duncan J. Stewart
The endothelial cell (EC) specific tyrosine kinase receptor, Tie2, interacts with at least two ligands, angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2). Ang1 stimulates Tie2 receptor autophosphorylation, while Ang2 has been reported to inhibit Ang1-induced Tie2 receptor autophosphorylation. We studied the effects of Ang1 and Ang2 in an in vitro model of angiogenesis. Human ECs (HUVEC), cultured on 3-D fibrin matrices, were treated with conditioned media (CM) from stably transfected cells expressing human Ang1 or Ang2, or with purified recombinant proteins. EC tube formation was measured as a differentiation index (DI), calculated as the ratio of total tube length over residual of EC monolayer. CM from Ang1 overexpressing A10 SMC or HEK293T cells induced profound HUVEC differentiation, resulting in the formation of extensive capillary-like tubes within 48 h (DI: 24.58+/-5.91 and 19.13+/-7.86, respectively) vs. control (DI: 2.73+/-1.68 and 2.15+/-1.45, respectively, both P<0.001). Interestingly, CM from two independent cell lines overexpressing Ang2 also produced a significant increase in EC differentiation (DI: 9.22+/-3.00 and 9.72+/-4.84, both P<0.005 vs. control) although the degree of angiogenesis was significantly less then that seen with Ang1. Addition of Ang1* (a genetically engineered variant of naturally occurring Ang1) or Ang2 also resulted in dose dependent increases in DI, which were blocked by an excess of soluble Tie2 receptor (20 microg/ml). Both Ang1* and Ang2 induced modest increases in [3H]thymidine incorporation into HUVECs (20 and 26%, respectively), which were inhibited by excess soluble Tie2. Although Ang2 was unable to induce significant Tie2 receptor phosphorylation during a 5-min exposure, a 24-h pretreatment with Ang2, followed by brief re-exposure, produced Tie2 phosphorylation in HUVEC comparable to that produced by Ang1*. These results demonstrate for the first time that Ang2 may have a direct role in stimulating Tie2 receptor signaling and inducing in vitro angiogenesis. Our findings suggest that the physiological role of Ang2 is more complex than previously recognized: acting alternately to promote or blunt Tie2 receptor signaling in endothelial cells, depending on local conditions.
Journal of Biological Chemistry | 1999
Nina Jones; Zubin Master; Jamie Jones; Denis Bouchard; Yuji Gunji; Hiroki Sasaki; Roger J. Daly; Kari Alitalo; Daniel J. Dumont
The Tek/Tie2 receptor tyrosine kinase plays a pivotal role in vascular and hematopoietic development. To study the signal transduction pathways that are mediated by this receptor, we have used the yeast two-hybrid system to identify signaling molecules that associate with the phosphorylated Tek receptor. Using this approach, we demonstrate that five molecules, Grb2, Grb7, Grb14, Shp2, and the p85 subunit of phosphatidylinositol 3-kinase can interact with Tek in a phosphotyrosine-dependent manner through their SH2 domains. Mapping of the binding sites of these molecules on Tek reveals the presence of a multisubstrate docking site in the carboxyl tail of Tek (Tyr1100). Mutation of this site abrogates binding of Grb2 and Grb7 to Tek in vivo, and this site is required for tyrosine phosphorylation of Grb7 and p85 in vivo. Furthermore, stimulation of Tek-expressing cells with Angiopoietin-1 results in phosphorylation of both Tek and p85 and in activation of endothelial cell migration and survival pathways that are dependent in part on phosphatidylinositol 3-kinase. Taken together, these results demonstrate that Angiopoietin-1-induced signaling from the Tek receptor is mediated by a multifunctional docking site that is responsible for activation of both cell migration and cell survival pathways.
American Journal of Pathology | 2003
Saeid Babaei; Krystyna Teichert-Kuliszewska; Qiuwang Zhang; Nina Jones; Daniel J. Dumont; Duncan J. Stewart
Angiopoietin1 (Ang1) is a novel angiogenic factor with important actions on endothelial cell (EC) differentiation and vascular maturation. Ang1 has been shown to prevent EC apoptosis through activation of PI3-kinase/Akt, a pathway that is also known to activate endothelium nitric oxide synthase (eNOS). Therefore, we hypothesized that the angiogenic effects of Ang1 would also be dependent on the PI3-kinase/Akt pathway, possibly mediated by increased eNOS activity and NO release. Treatment of human umbilical vein endothelial cells with recombinant Ang1* (300 ng/ml) for 15 minutes resulted in PI3-kinase-dependent Akt phosphorylation, comparable to that observed with vascular endothelial growth factor (VEGF) (50 ng/ml), and increased NO production in a PI3-kinase/Akt-dependent manner. Capillary-like tube formation induced by Ang1* in fibrin matrix at 24 hours (differentiation index, DI: 13.74 +/- 0.76 versus control 1.71 +/- 0.31) was abolished in the presence of the selective PI3-kinase inhibitor, LY294002 (50 micro mol/L) (DI: 0.31 +/- 0.31, P < 0.01) or the NOS inhibitor, L-NAME (3 mmol/L) (DI: 4.10 +/- 0.59, P < 0.01). In subcutaneous Matrigel implants in vivo, addition of recombinant Ang1* or wild-type Ang1 from conditioned media of COS-1 cells transfected with a pFLAG Ang1 expression vector, induced significant neovascularization to a degree similar to VEGF. Finally, angiogenesis in vivo in response to both Ang1 and VEGF was significantly reduced in eNOS-deficient compared with wild-type mice. In summary, our results demonstrate for the first time that endothelial-derived NO is required for Ang1-induced angiogenesis, and that the PI3-kinase signaling mediates the activation of eNOS and NO release in response to Ang1.
Oncogene | 1998
Nina Jones; Daniel J. Dumont
Tek/Tie2 is an endothelial cell-specific receptor tyrosine kinase that has been shown to play a role in vascular development of the mouse. Targeted mutagenesis of both Tek and its agonistic ligand, Angiopoietin-1, result in embryonic lethality, demonstrating that the signal transduction pathway(s) mediated by this receptor are crucial for normal embryonic development. In an attempt to identify downstream signaling partners of the Tek receptor, we have used the yeast two-hybrid system to identify phosphotyrosine-dependent interactions. Using this approach, we have identified a novel docking molecule called Dok-R, which has sequence and structural homology to p62dok and IRS-3. Mapping of the phosphotyrosine-interaction domain within Dok-R shows that Dok-R interacts with Tek through a PTB domain. Dok-R is coexpressed with Tek in a number of endothelial cell lines. We show that coexpression of Dok-R with activated Tek results in tyrosine phosphorylation of Dok-R and that rasGAP and Nck coimmunoprecipitate with phosphorylated Dok-R. Furthermore, Dok-R is constitutively bound to Crk presumably through the proline rich tail of Dok-R. The cloning of Dok-R represents the first downstream substrate of the activated Tek receptor, and suggests that Tek can signal through a multitude of pathways.
Journal of Cell Science | 2006
Elena Bogdanovic; Vicky P. K. H. Nguyen; Daniel J. Dumont
The receptor tyrosine kinase Tie2 is highly expressed in endothelial cells and is crucial for angiogenesis and vascular maintenance. The ligands for Tie2 are the angiopoietins, of which angiopoietin-1 and angiopoietin-2 have been the most studied. Angiopoietin-1 has been characterized as the primary activating ligand for Tie2 whereas the role of angiopoietin-2 remains controversial; activating Tie2 in some studies and inhibiting Tie2 in others. Our studies were aimed at understanding the regulation of Tie2 in endothelial cells by angiopoietin-1 and angiopoietin-2 and revealed that both ligands activated Tie2 in a concentration-dependent manner. Angiopoietin-2 was considerably weaker at activating Tie2 compared with angiopoietin-1 suggesting that angiopoietin-2 may be a partial agonist. Activation of Tie2 by these ligands resulted in differential turnover of the receptor where binding of angiopoietin-1, and to a lesser extent angiopoietin-2, induced rapid internalization and degradation of Tie2. Furthermore, our binding studies demonstrate that both ligands are differentially released from the endothelial cell surface after receptor activation and accumulate in the surrounding medium. Altogether, these data begin our understanding of the regulation of Tie2 and the activity of the angiopoietins after engaging the endothelial cell surface.
Acta Neuropathologica | 2012
Karl H. Plate; Alexander Scholz; Daniel J. Dumont
The cellular and molecular mechanisms of tumor angiogenesis and its prospects for anti-angiogenic cancer therapy are major issues in almost all current concepts of both cancer biology and targeted cancer therapy. Currently, (1) sprouting angiogenesis, (2) vascular co-option, (3) vascular intussusception, (4) vasculogenic mimicry, (5) bone marrow-derived vasculogenesis, (6) cancer stem-like cell-derived vasculogenesis and (7) myeloid cell-driven angiogenesis are all considered to contribute to tumor angiogenesis. Many of these processes have been described in developmental angiogenesis; however, the relative contribution and relevance of these in human brain cancer remain unclear. Preclinical tumor models support a role for sprouting angiogenesis, vascular co-option and myeloid cell-derived angiogenesis in glioma vascularization, whereas a role for the other four mechanisms remains controversial and rather enigmatic. The anti-angiogenesis drug Avastin (Bevacizumab), which targets VEGF, has become one of the most popular cancer drugs in the world. Anti-angiogenic therapy may lead to vascular normalization and as such facilitate conventional cytotoxic chemotherapy. However, preclinical and clinical studies suggest that anti-VEGF therapy using bevacizumab may also lead to a pro-migratory phenotype in therapy resistant glioblastomas and thus actively promote tumor invasion and recurrent tumor growth. This review focusses on (1) mechanisms of tumor angiogenesis in human malignant glioma that are of particular relevance for targeted therapy and (2) controversial issues in tumor angiogenesis such as cancer stem-like cell-derived vasculogenesis and bone-marrow-derived vasculogenesis.