Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J. Lehrmann is active.

Publication


Featured researches published by Daniel J. Lehrmann.


Geology | 1999

Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang basin, south China

Daniel J. Lehrmann

Stanley’s model (1988) proposed that a Permiantype reef fauna survived the Early Triassic reefless period in yet undiscovered refuges in the ancestral Pacific ocean and then reappeared as the builders of Middle Triassic reefs. Flugel (1994), in contrast, suggested that the Middle Triassic reefbuilding fauna are not holdovers from the Permian, but bear only a superficial resemblance to Permian fossils. Recent publications reflect a consensus that the Early Triassic lacked reefs and reef mounds although some authors acknowledged the possibility that reef-like structures may have existed in poorly explored areas such as south China and Russia (Senowbari-Daryan et al., 1993; Flugel, 1994). It is shown herein that Calcimicrobial framework mounds and biostromes existed in the Early Triassic in the Nanpanjiang basin of south China. Organic framework in this paper refers to a three dimensional, biologically-constructed network of calcified fossils that forms a rigid mass and supports an interconnected network of internal cavities that were open during accumulation. Although the calcimicrobial frameworks discussed herein are much smaller than frameworks of modern metazoan reefs, the term framestone is more appropriate for these fabrics than other reef-rock terms such as bindstone or bafflestone (Embry and Klovan, 1971). These calcimicrobial mounds and biostromes are important as the first organic framestones documented from the Early Triassic.


PALAIOS | 2003

Permian–Triassic Boundary Sections from Shallow-Marine Carbonate Platforms of the Nanpanjiang Basin, South China: Implications for Oceanic Conditions Associated with the End-Permian Extinction and Its Aftermath

Daniel J. Lehrmann; Jonathan L. Payne; Sharon V. Felix; Peter M. Dillett; Hongmei Wang; YouYi Yu; Jiayong Wei

Abstract Permian-Triassic boundary (PTB) sections from isolated carbonate platforms in the Nanpanjiang Basin of south China contain Upper Permian skeletal packstones with diverse open-marine fossils overlain by a 7–15 m thick boundary horizon composed of calcimicrobial framestone constructed by globular to tufted, calcified cyanobacteria similar to Renalcis. The framestone contains interbeds of lime-grainstone with abundant thin-shelled bivalves and brachiopods. The overlying Lower Triassic strata contain microgastropod lime-packstones followed by a thick succession of thin-bedded lime-mudstones. The PTB event horizon is interpreted to occur at the top of the packstone containing diverse, open-marine fauna and Palaeofusulina and coincident with the abrupt change to calcimicrobial framestone lacking Permian macrofossils. The conformable biostratigraphic boundary occurs at the first appearance of Hindeodus parvus within the basal meter of the calcimicrobial framestone. Intensively studied PTB sections in south China, such as the GSSP at Meishan, primarily are condensed sections from deep-water, basin environments that contain a thin (< 30 cm) boundary horizon of claystone and lime-mudstone or marl. The sections reported herein are fundamentally different in that they consist of shallow-marine carbonate facies, contain a thick boundary horizon composed of calcimicrobial framestone, and lack evidence of an abrupt shift in depositional environment or water depth. The calcimicrobial framestone boundary horizon occurs in all of the isolated carbonate platforms in the Nanpanjiang Basin. A similar microbial facies has been found in the basal Triassic H. parvus zone in the Sichuan Basin and in Japan. Distribution of the calcimicrobial framestone suggests that it may represent an anomalous oceanic event that affected a vast area of the equatorial eastern Tethys and Panthalassa during and/or immediately following the end-Permian mass extinction. The persistence of similar calcimicrobial framestone horizons into the Upper Scythian suggests that detrimental environmental conditions associated with the extinction persisted until the end of the Scythian. Further study of these sections promises to provide constraints on causes of the extinction and the environments in the aftermath.


Geology | 2006

Timing of recovery from the end-Permian extinction: Geochronologic and biostratigraphic constraints from south China

Daniel J. Lehrmann; Jahandar Ramezani; Samuel A. Bowring; Mark W. Martin; Paul Montgomery; Paul Enos; Jonathan L. Payne; Michael J. Orchard; Wang Hongmei; Wei Jiayong

Four volcanic-ash beds bracket the Early-Middle Triassic boundary, as defined by conodont biostratigraphy, in a stratigraphic section in south China. High-precision U-Pb dates of single zircons allow us to place the Early to Middle Triassic (Olenekian-Anisian) boundary at 247.2 Ma. Magnetic-reversal stratigraphy allows global correlation. The new dates constrain the Early Triassic interval characterized by delayed biotic recovery and carbon-cycle instability to ∼5 m.y. This time constraint must be considered in any model for the end-Permian extinction and subsequent recovery.


Palaeogeography, Palaeoclimatology, Palaeoecology | 2004

Stable carbon isotope stratigraphy across the Permian–Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China

Evelyn S. Krull; Daniel J. Lehrmann; Dominic Druke; Benjamin Kessel; YouYi Yu; Rongxi Li

A distinct negative δ13C excursion is documented in two Permian–Triassic sections (Heping and Taiping) in shallow marine carbonate platform deposits in the Nanpanjiang Basin, south China. These sections span from the Changhsingian to the Dienerian and are characterized by a distinct marine boundary facies change from massive, skeletal lime packstone in the Changhsingian to distinctive calcimicrobial framestone in the Griesbachian Hindeodus parvus Zone. The δ13Corg and δ13Ccarb excursions occur directly after the onset of the calcimicrobial framestone (herein termed the ‘Permian–Triassic boundary event’) and before the first occurrence of H. parvus. The isotope shifts are associated with a sharp drop in species abundance and diversity and coincide with a decrease in total organic carbon (TOC) content. The shift towards depleted values in δ13Corg and δ13Ccarb at the Permian–Triassic boundary event, together with low TOC contents, persists throughout the Griesbachian H. parvus Zone. These data document a corresponding negative shift of δ13Corg and δ13Ccarb, values and low TOC contents with the onset of growth of calcified microbial framestones (a postextinction ‘disaster facies’) immediately below the base of the Griesbachian H. parvus Zone. Based on paleontological evidence, the first occurrence of the ‘disaster facies’ follows the extinction event, which implies that the 13C-depleted values above this facies postdate the event. This suggests that two separate events had to account for the initiation of the extinction and the δ13C excursion. However, the consequences that led to the negative isotopic shift might be linked to the intriguing recovery lag of Early Triassic ecosystems. Based on data from PTB sections worldwide of a greater δ13C offset in high compared with low latitudes, we propose that methane eruptions from thermal destabilization of high-latitude clathrate deposits may have led to the negative δ13C shift and may have caused long-term adverse ecological conditions.


Geological Society of America Bulletin | 2007

Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events

Jonathan L. Payne; Daniel J. Lehrmann; David Follett; Margaret Seibel; Lee R. Kump; Anthony Riccardi; Demir Altiner; Hiroyoshi Sano; Jiayong Wei

On shallow-marine carbonate buildups in south China, Turkey, and Japan, uppermost Permian skeletal limestones are truncated by an erosional surface that exhibits as much as 10 cm of topography, including overhanging relief. Sedimentary facies, microfabrics, carbon isotopes, and cements together suggest that erosion occurred in a submarine setting. Moreover, biostratigraphic data from south China demonstrate that the surface postdates the uppermost Permian sequence boundary at the global stratotype section and truncates strata within the youngest known Permian conodont zone. The occurrences of similar truncation surfaces at the mass-extinction horizon on carbonate platforms across the global tropics, each overlain by microbial buildups, and their association with a large negative excursion in δ 13 C further suggest a causal link between erosion of shallow-marine carbonates and mass extinction. Previously proposed to account for marine extinctions, the hypothesis of rapid carbon release from sedimentary reservoirs or the deep ocean can also explain the petrographic observations. Rapid, unbuffered carbon release would cause submarine carbonate dissolution, accounting for erosion of uppermost Permian skeletal carbonates, and would be followed by a pulse of high carbonate saturation, explaining the precipitation of microbial limestones containing upwardgrowing carbonate crystal fans. Models for other carbon-release events suggest that at least 5 × 10 18 g of carbon, released in <100 k.y., would be required. Of previously hypothesized Permian-Triassic boundary scenarios, thermogenic methane production from heating of coals during Siberian Traps emplacement best accounts for petrographic characteristics and depositional environment of the truncation surface and overlying microbial limestone, as well as an associated carbon isotope excursion and physiologically selective extinction in the marine realm.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Calcium isotope constraints on the end-Permian mass extinction.

Jonathan L. Payne; Alexandra V. Turchyn; Adina Paytan; Donald J. DePaolo; Daniel J. Lehrmann; Meiyi Yu; Jiayong Wei

The end-Permian mass extinction horizon is marked by an abrupt shift in style of carbonate sedimentation and a negative excursion in the carbon isotope (δ13C) composition of carbonate minerals. Several extinction scenarios consistent with these observations have been put forward. Secular variation in the calcium isotope (δ44/40Ca) composition of marine sediments provides a tool for distinguishing among these possibilities and thereby constraining the causes of mass extinction. Here we report δ44/40Ca across the Permian-Triassic boundary from marine limestone in south China. The δ44/40Ca exhibits a transient negative excursion of ∼0.3‰ over a few hundred thousand years or less, which we interpret to reflect a change in the global δ44/40Ca composition of seawater. CO2-driven ocean acidification best explains the coincidence of the δ44/40Ca excursion with negative excursions in the δ13C of carbonates and organic matter and the preferential extinction of heavily calcified marine animals. Calcium isotope constraints on carbon cycle calculations suggest that the average δ13C of CO2 released was heavier than -28‰ and more likely near -15‰; these values indicate a source containing substantial amounts of mantle- or carbonate-derived carbon. Collectively, the results point toward Siberian Trap volcanism as the trigger of mass extinction.


PALAIOS | 2006

The Pattern and Timing of Biotic Recovery from the End-Permian Extinction on the Great Bank of Guizhou, Guizhou Province, China

Jonathan L. Payne; Daniel J. Lehrmann; Jiayong Wei; Andrew H. Knoll

Abstract Microfacies analysis and point counts of thin sections from 608 hand samples were used to track changes in the abundance and diversity of fossil grains through the extended recovery interval following end-Permian mass extinction on the Great Bank of Guizhou (GBG)—an isolated Late Permian to Late Triassic carbonate platform in south China. Exposure of a two-dimensional cross-section of the platform permits the comparison of faunal patterns along an environmental gradient from shallow to deep water. The diverse Late Permian biota was dominated by calcareous sponges, crinoids, articulate brachiopods, foraminifera, and calcareous algae. In contrast, Early Triassic communities were dominated by mollusks, with increasing abundance of crinoids beginning in the Spathian. Increase in the diversity and abundance of fossils on the GBG was confined to a brief interval near the Spathian–Anisian boundary and concentrated along the platform margin. Later Middle Triassic diversification, the return of calcareous algae and calcareous sponges, and the appearance of scleractinian corals did not substantially alter the mollusk-crinoid-Tubiphytes assemblage before the end of the Middle Triassic. The low abundance of skeletal grains in Lower Triassic strata implies: (1) similarities in the relative contributions of micrite, microbialites, and oolites to Neoproterozoic carbonates result, at least in part, from the temporary removal of skeletal sinks for calcium carbonate; and (2) animals with hard skeletons remained at low abundance from the time of the end-Permian extinction through much of the Early Triassic.


PALAIOS | 2006

ENVIRONMENTAL AND BIOLOGICAL CONTROLS ON THE INITIATION AND GROWTH OF A MIDDLE TRIASSIC (ANISIAN) REEF COMPLEX ON THE GREAT BANK OF GUIZHOU, GUIZHOU PROVINCE, CHINA

Jonathan L. Payne; Daniel J. Lehrmann; Shannon Christensen; Jiayong Wei; Andrew H. Knoll

Abstract The Great Bank of Guizhou (GBG) is an isolated Late Permian to Late Triassic carbonate platform in the Nanpanjiang Basin of Guizhou Province, southwest China. A faulted syncline exposes a cross section of the platform margin, including a well-preserved Anisian (earliest Middle Triassic) reef complex approximately 1 km wide and 800 meters thick. Geochronologic constraints from associated basin-margin strata indicate that reef development initiated late in the Early Triassic, making it the oldest-known platform-margin reef complex of the Mesozoic Era. The reef framework consists primarily of microspar-filled tubes ∼100 μm wide and up to a few cm long that are embedded in irregular to branching, mm-scale masses of micrite, traditionally assigned to the problematic genus Tubiphytes. Based on preserved sporangia, the Nanpanjiang structures are interpreted as microbially induced micritic precipitates that formed in association with an otherwise uncalcified alga. A low-diversity metazoan and algal community also occurs within the reef complex, but these organisms did not contribute significantly to the reef framework or to the accretion of the reef complex. Rather, reef development is interpreted to have resulted largely from the stabilization of platform-margin sediments by algae and associated microbial mats. Only gradually, through the Middle and Late Triassic, did framework-building metazoans evolve to occupy and then construct reefs on the margins of carbonate platforms.


Paleobiology | 2011

Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south China: implications for tempo and mode of biotic recovery from the end-Permian mass extinction

Jonathan L. Payne; Mindi M. Summers; Brianna L. Rego; Demir Altiner; Jiayong Wei; Meiyi Yu; Daniel J. Lehrmann

Abstract Delayed biotic recovery from the end-Permian mass extinction has long been interpreted to result from environmental inhibition. Recently, evidence of more rapid recovery has begun to emerge, suggesting the role of environmental inhibition was previously overestimated. However, there have been few high-resolution taxonomic and ecological studies spanning the full Early and Middle Triassic recovery interval, leaving the precise pattern of recovery and underlying mechanisms poorly constrained. In this study, we document Early and Middle Triassic trends in taxonomic diversity, assemblage evenness, and size distribution of benthic foraminifers on an exceptionally exposed carbonate platform in south China. We observe gradual increases in all metrics through Early Triassic and earliest Middle Triassic time, with stable values reached early in the Anisian. There is little support in our data set for a substantial Early Triassic lag interval during the recovery of foraminifers or for a stepwise recovery pattern. The recovery pattern of foraminifers on the GBG corresponds well with available global data for this taxon and appears to parallel that of many benthic invertebrate clades. Early Triassic diversity increase in foraminifers was more gradual than in ammonoids and conodonts. However, foraminifers continued to increase in diversity, size, and evenness into Middle Triassic time, whereas diversity of ammonoids and conodonts declined. These contrasts suggest decoupling of recovery between benthic and pelagic environments; it is unclear whether these discrepancies reflect inherent contrasts in their evolutionary dynamics or the differential impact of Early Triassic ocean anoxia or associated environmental parameters on benthic ecosystems.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Marine anoxia and delayed Earth system recovery after the end-Permian extinction

Kimberly V. Lau; Kate Maher; Demir Altiner; Brian M. Kelley; Lee R. Kump; Daniel J. Lehrmann; Juan Carlos Silva-Tamayo; K. L. Weaver; Meiyi Yu; Jonathan L. Payne

Significance The end-Permian mass extinction not only decimated taxonomic diversity but also disrupted the functioning of global ecosystems and the stability of biogeochemical cycles. Explaining the 5-million-year delay between the mass extinction and Earth system recovery remains a fundamental challenge in both the Earth and biological sciences. We use coupled records of uranium concentrations and isotopic compositions to constrain global marine redox conditions across the end-Permian extinction horizon and through the subsequent 17 million years of Earth system recovery. Our finding that the trajectory of biological and biogeochemical recovery corresponds to variations in an ocean characterized by extensive, shallow marine anoxia provides, to our knowledge, the first unified explanation for these observations. Delayed Earth system recovery following the end-Permian mass extinction is often attributed to severe ocean anoxia. However, the extent and duration of Early Triassic anoxia remains poorly constrained. Here we use paired records of uranium concentrations ([U]) and 238U/235U isotopic compositions (δ238U) of Upper Permian−Upper Triassic marine limestones from China and Turkey to quantify variations in global seafloor redox conditions. We observe abrupt decreases in [U] and δ238U across the end-Permian extinction horizon, from ∼3 ppm and −0.15‰ to ∼0.3 ppm and −0.77‰, followed by a gradual return to preextinction values over the subsequent 5 million years. These trends imply a factor of 100 increase in the extent of seafloor anoxia and suggest the presence of a shallow oxygen minimum zone (OMZ) that inhibited the recovery of benthic animal diversity and marine ecosystem function. We hypothesize that in the Early Triassic oceans—characterized by prolonged shallow anoxia that may have impinged onto continental shelves—global biogeochemical cycles and marine ecosystem structure became more sensitive to variation in the position of the OMZ. Under this hypothesis, the Middle Triassic decline in bottom water anoxia, stabilization of biogeochemical cycles, and diversification of marine animals together reflect the development of a deeper and less extensive OMZ, which regulated Earth system recovery following the end-Permian catastrophe.

Collaboration


Dive into the Daniel J. Lehrmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge