Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J. Lew is active.

Publication


Featured researches published by Daniel J. Lew.


Cell | 1991

Isolation of three novel human cyclins by rescue of G1 cyclin (cln) function in yeast

Daniel J. Lew; Vjekoslav Dulić; Steven I. Reed

We have isolated a number of cDNAs derived from human mRNAs that are able to substitute for G1 cyclin genes in S. cerevisiae. Several of these encode human cyclins A, B1, and B2. Three novel genes have been identified, which we call cyclins C, D, and E. The novel proteins are sufficiently distantly related to the other members of the cyclin family and to each other as to constitute three new classes of cyclins. Cyclin C and E mRNAs accumulate periodically through the cell cycle, peaking at different times in G1.


Current Opinion in Cell Biology | 1996

Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control

Daniel J. Lew; Sally Kornbluth

Cyclins and cyclin-dependent kinases (Cdks) are universal regulators of cell cycle progression in eukaryotic cells. Cdk activity is controlled by phosphorylation at three conserved sites, and many of the enzymes that act on these sites have now been identified. Although the biochemistry of Cdk phosphorylation is relatively well understood, the regulatory roles of such phosphorylation are, in many cases, obscure. Recent studies have uncovered new and unexpected potential roles, and prompted re-examination of previously assumed roles, of Cdk phosphorylation.


Current Opinion in Microbiology | 2001

The septin cortex at the yeast mother-bud neck.

Amy S. Gladfelter; John R. Pringle; Daniel J. Lew

A specialized cortical domain is organized by the septins at the necks of budding yeast cells. Recent findings suggest that this domain serves as a diffusion barrier and also as a local cell-shape sensor. We review these findings along with what is known about the organization of the septin cortex and its regulation during the cell cycle.


The EMBO Journal | 1991

Cytoplasmic activation of GAF, an IFN-gamma-regulated DNA-binding factor.

T Decker; Daniel J. Lew; J Mirkovitch; James E. Darnell

We have investigated events following treatment of cells with interferon‐gamma (IFN‐gamma) that lead to the immediate transcriptional activation of an inducible gene. A gamma‐interferon activation factor (GAF) was activated in the cytoplasm of human fibroblasts immediately after IFN‐gamma treatment and bound to a newly identified target DNA sequence, the gamma‐interferon activation site (GAS). The time course of activation of GAF was different in fibroblasts and HeLa cells and correlated well with IFN‐gamma‐induced transcriptional activation in both cell types. IFN‐gamma‐dependent activation of GAF also occurred in enucleated cells (cytoplasts), showing that an inactive cytoplasmic precursor is converted to the active factor. These findings support the concept that ligand‐specific signals originating at the cell surface are transmitted through latent cytoplasmic proteins which are activated to bind specific DNA sites and then move to the nucleus to activate the transcription of specific sets of genes.


Molecular and Cellular Biology | 2000

Septin-Dependent Assembly of a Cell Cycle-Regulatory Module in Saccharomyces cerevisiae

Mark S. Longtine; Chandra L. Theesfeld; John N. McMillan; Elizabeth Weaver; John R. Pringle; Daniel J. Lew

ABSTRACT Saccharomyces cerevisiae septin mutants have pleiotropic defects, which include the formation of abnormally elongated buds. This bud morphology results at least in part from a cell cycle delay imposed by the Cdc28p-inhibitory kinase Swe1p. Mutations in three other genes (GIN4, encoding a kinase related to the Schizosaccharomyces pombe mitotic inducer Nim1p; CLA4, encoding a p21-activated kinase; andNAP1, encoding a Clb2p-interacting protein) also produce perturbations of septin organization associated with an Swe1p-dependent cell cycle delay. The effects of gin4, cla4, and nap1 mutations are additive, indicating that these proteins promote normal septin organization through pathways that are at least partially independent. In contrast, mutations affecting the other two Nim1p-related kinases in S. cerevisiae, Hsl1p and Kcc4p, produce no detectable effect on septin organization. However, deletion of HSL1, but not of KCC4, did produce a cell cycle delay under some conditions; this delay appears to reflect a direct role of Hsl1p in the regulation of Swe1p. As shown previously, Swe1p plays a central role in the morphogenesis checkpoint that delays the cell cycle in response to defects in bud formation. Swe1p is localized to the nucleus and to the daughter side of the mother bud neck prior to its degradation in G2/M phase. Both the neck localization of Swe1p and its degradation require Hsl1p and its binding partner Hsl7p, both of which colocalize with Swe1p at the daughter side of the neck. This localization is lost in mutants with perturbed septin organization, suggesting that the release of Hsl1p and Hsl7p from the neck may reduce their ability to inactivate Swe1p and thus contribute to the G2 delay observed in such mutants. In contrast, treatments that perturb actin organization have little effect on Hsl1p and Hsl7p localization, suggesting that such treatments must stabilize Swe1p by another mechanism. The apparent dependence of Swe1p degradation on localization of the Hsl1p-Hsl7p-Swe1p module to a site that exists only in budded cells may constitute a mechanism for deactivating the morphogenesis checkpoint when it is no longer needed (i.e., after a bud has formed).


Current Opinion in Genetics & Development | 1995

Cell cycle control of morphogenesis in budding yeast.

Daniel J. Lew; Steven I. Reed

A detailed description of the cytoskeletal rearrangements that orchestrate bud formation is beginning to emerge from studies on yeast morphogenesis. In this review, we focus on recent advances in our understanding of how the timing of these rearrangements is controlled. Dramatic changes in cell polarity that occur in G1 (polarization to the bud site), G2 (depolarization within the bud), and mitosis (repolarization to the mother/bud neck) are triggered by changes in the kinase activity of Cdc28, the universal regulator of cell cycle progression. The hunt for Cdc28 morphogenesis substrates is on.


Molecular and Cellular Biology | 1991

Overlapping elements in the guanylate-binding protein gene promoter mediate transcriptional induction by alpha and gamma interferons.

Daniel J. Lew; T Decker; I Strehlow; James E. Darnell

The gene encoding a 67-kDa cytoplasmic guanylate-binding protein (GBP) is transcriptionally induced in cells exposed to interferon of either type I (alpha interferon [IFN-alpha] or type II (IFN-gamma). The promoter of the GBP gene was cloned and found to contain an IFN-alpha-stimulated response element, which mediated the response of the GBP gene to IFN-alpha. On the basis of transfection experiments with recombinant plasmids, two different elements were delineated. Both were required to obtain the maximal response of the GBP gene to IFN-gamma: the IFN-alpha-stimulated response element and an overlapping element termed the IFN-gamma activation site. Different proteins that act on each element were investigated, and their possible involvement in IFN-gamma-induced transcriptional regulation is discussed.


Nature Cell Biology | 2003

Scaffold-mediated symmetry breaking by Cdc42p

Javier E. Irazoqui; Amy S. Gladfelter; Daniel J. Lew

Cell polarization generally occurs along a single well-defined axis that is frequently determined by environmental cues such as chemoattractant gradients or cell–cell contacts, but polarization can also occur spontaneously in the apparent absence of such cues, through a process called symmetry breaking. In Saccharomyces cerevisiae, cells are born with positional landmarks that mark the poles of the cell and guide subsequent polarization and bud emergence to those sites, but cells lacking such landmarks polarize towards a random cortical site and proliferate normally. The landmarks employ a Ras-family GTPase, Rsr1p, to communicate with the conserved Rho-family GTPase Cdc42p, which is itself polarized and essential for cytoskeletal polarization. We found that yeast Cdc42p was effectively polarized to a single random cortical site even in the combined absence of landmarks, microtubules and microfilaments. Among a panel of Cdc42p effectors and interacting proteins, we found that the scaffold protein Bem1p was uniquely required for this symmetry-breaking behaviour. Moreover, polarization was dependent on GTP hydrolysis by Cdc42p, suggesting that assembly of a polarization site involves cycling of Cdc42p between GTP- and GDP-bound forms, rather than functioning as a simple on/off switch.


Cell | 1991

A cyclin B homolog in S. cerevisiae: Chronic activation of the Cdc28 protein kinase by cyclin prevents exit from mitosis

Jayant B. Ghiara; Helena E. Richardson; Katsunori Sugimoto; Martha Henze; Daniel J. Lew; Curt Wittenberg; Steven I. Reed

A cyclin B homolog was identified in Saccharomyces cerevisiae using degenerate oligonucleotides and the polymerase chain reaction. The protein, designated Scb1, has a high degree of similarity with B-type cyclins from organisms ranging from fission yeast to human. Levels of SCB1 mRNA and protein were found to be periodic through the cell cycle, with maximum accumulation late, most likely in the G2 interval. Deletion of the gene was found not to be lethal, and subsequently other B-type cyclins have been found in yeast functionally redundant with Scb1. A mutant allele of SCB1 that removes an amino-terminal fragment of the encoded protein thought to be required for efficient degradation during mitosis confers a mitotic arrest phenotype. This arrest can be reversed by inactivation of the Cdc28 protein kinase, suggesting that cyclin-mediated arrest results from persistent protein kinase activation.


Journal of Biological Chemistry | 2001

Assembly of Scaffold-mediated Complexes Containing Cdc42p, the Exchange Factor Cdc24p, and the Effector Cla4p Required for Cell Cycle-regulated Phosphorylation of Cdc24p

Indrani Bose; Javier E. Irazoqui; John J. Moskow; Elaine S.G. Bardes; Trevin R. Zyla; Daniel J. Lew

In budding yeast cells, the cytoskeletal polarization and depolarization events that shape the bud are triggered at specific times during the cell cycle by the cyclin-dependent kinase Cdc28p. Polarity establishment also requires the small GTPase Cdc42p and its exchange factor, Cdc24p, but the mechanism whereby Cdc28p induces Cdc42p-dependent polarization is unknown. Here we show that Cdc24p becomes phosphorylated in a cell cycle-dependent manner, triggered by Cdc28p. However, the role of Cdc28p is indirect, and the phosphorylation appears to be catalyzed by the p21-activated kinase family member Cla4p and also depends on Cdc42p and the scaffold protein Bem1p. Expression of GTP-Cdc42p, the product of Cdc24p-mediated GDP/GTP exchange, stimulated Cdc24p phosphorylation independent of cell cycle cues, raising the possibility that the phosphorylation is part of a feedback regulatory pathway. Bem1p binds directly to Cdc24p, to Cla4p, and to GTP-bound Cdc42p and can mediate complex formation between these proteins in vitro. We suggest that Bem1p acts to concentrate polarity establishment proteins at a discrete site, facilitating polarization and promoting Cdc24p phosphorylation at specific times during the cell cycle.

Collaboration


Dive into the Daniel J. Lew's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven I. Reed

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge