Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J.M. Fernández-Ayala is active.

Publication


Featured researches published by Daniel J.M. Fernández-Ayala.


Cell Metabolism | 2009

Expression of the Ciona intestinalis Alternative Oxidase (AOX) in Drosophila Complements Defects in Mitochondrial Oxidative Phosphorylation

Daniel J.M. Fernández-Ayala; Alberto Sanz; Suvi Vartiainen; Kia K. Kemppainen; Marek Babusiak; Eero Mustalahti; Rodolfo Costa; Tea Tuomela; Massimo Zeviani; Jongkyeong Chung; Kevin M.C. O'Dell; Pierre Rustin; Howard T. Jacobs

Defects in mitochondrial OXPHOS are associated with diverse and mostly intractable human disorders. The single-subunit alternative oxidase (AOX) found in many eukaryotes, but not in arthropods or vertebrates, offers a potential bypass of the OXPHOS cytochrome chain under conditions of pathological OXPHOS inhibition. We have engineered Ciona intestinalis AOX for conditional expression in Drosophila melanogaster. Ubiquitous AOX expression produced no detrimental phenotype in wild-type flies. However, mitochondrial suspensions from AOX-expressing flies exhibited a significant cyanide-resistant substrate oxidation, and the flies were partially resistant to both cyanide and antimycin. AOX expression was able to complement the semilethality of partial knockdown of both cyclope (COXVIc) and the complex IV assembly factor Surf1. It also rescued the locomotor defect and excess mitochondrial ROS production of flies mutated in dj-1beta, a Drosophila homolog of the human Parkinsons disease gene DJ1. AOX appears to offer promise as a wide-spectrum therapeutic tool in OXPHOS disorders.


Cell Metabolism | 2016

Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan

Filippo Scialò; Ashwin Sriram; Daniel J.M. Fernández-Ayala; Nina Gubina; Madis Lõhmus; Glyn Nelson; Angela Logan; Helen M. Cooper; Plácido Navas; José Antonio Enríquez; Michael P. Murphy; Alberto Sanz

Summary Increased production of reactive oxygen species (ROS) has long been considered a cause of aging. However, recent studies have implicated ROS as essential secondary messengers. Here we show that the site of ROS production significantly contributes to their apparent dual nature. We report that ROS increase with age as mitochondrial function deteriorates. However, we also demonstrate that increasing ROS production specifically through respiratory complex I reverse electron transport extends Drosophila lifespan. Reverse electron transport rescued pathogenesis induced by severe oxidative stress, highlighting the importance of the site of ROS production in signaling. Furthermore, preventing ubiquinone reduction, through knockdown of PINK1, shortens lifespan and accelerates aging; phenotypes that are rescued by increasing reverse electron transport. These results illustrate that the source of a ROS signal is vital in determining its effects on cellular physiology and establish that manipulation of ubiquinone redox state is a valid strategy to delay aging.


Journal of Biological Chemistry | 2004

Demethoxy-Q, an intermediate of coenzyme Q biosynthesis, fails to support respiration in Saccharomyces cerevisiae and lacks antioxidant activity

Sergio Padilla; Tanya Jonassen; María Jiménez-Hidalgo; Daniel J.M. Fernández-Ayala; Guillermo López-Lluch; Beth N. Marbois; Plácido Navas; Catherine F. Clarke; Carlos Santos-Ocaña

Caenorhabditis elegans clk-1 mutants cannot produce coenzyme Q9 and instead accumulate demethoxy-Q9 (DMQ9). DMQ9 has been proposed to be responsible for the extended lifespan of clk-1 mutants, theoretically through its enhanced antioxidant properties and its decreased function in respiratory chain electron transport. In the present study, we assess the functional roles of DMQ6 in the yeast Saccharomyces cerevisiae. Three mutations designed to mirror the clk-1 mutations of C. elegans were introduced into COQ7, the yeast homologue of clk-1: E233K, predicted to disrupt the di-iron carboxylate site considered essential for hydroxylase activity; L237Stop, a deletion of 36 amino acid residues from the carboxyl terminus; and P175Stop, a deletion of the carboxyl-terminal half of Coq7p. Growth on glycerol, quinone content, respiratory function, and response to oxidative stress were analyzed in each of the coq7 mutant strains. Yeast strains lacking Q6 and producing solely DMQ were respiratory deficient and unable to support 6either NADH-cytochrome c reductase or succinate-cytochrome c reductase activities. DMQ6 failed to protect cells against oxidative stress generated by H2O2 or linolenic acid. Thus, in the yeast model system, DMQ does not support respiratory activity and fails to act as an effective antioxidant. These results suggest that the life span extension observed in the C. elegans clk-1 mutants cannot be attributed to the presence of DMQ per se.


PLOS ONE | 2010

Gene Expression in a Drosophila Model of Mitochondrial Disease

Daniel J.M. Fernández-Ayala; Shanjun Chen; Esko Kemppainen; Kevin M.C. O'Dell; Howard T. Jacobs

Background A point mutation in the Drosophila gene technical knockout (tko), encoding mitoribosomal protein S12, was previously shown to cause a phenotype of respiratory chain deficiency, developmental delay, and neurological abnormalities similar to those presented in many human mitochondrial disorders, as well as defective courtship behavior. Methodology/Principal Findings Here, we describe a transcriptome-wide analysis of gene expression in tko25t mutant flies that revealed systematic and compensatory changes in the expression of genes connected with metabolism, including up-regulation of lactate dehydrogenase and of many genes involved in the catabolism of fats and proteins, and various anaplerotic pathways. Gut-specific enzymes involved in the primary mobilization of dietary fats and proteins, as well as a number of transport functions, were also strongly up-regulated, consistent with the idea that oxidative phosphorylation OXPHOS dysfunction is perceived physiologically as a starvation for particular biomolecules. In addition, many stress-response genes were induced. Other changes may reflect a signature of developmental delay, notably a down-regulation of genes connected with reproduction, including gametogenesis, as well as courtship behavior in males; logically this represents a programmed response to a mitochondrially generated starvation signal. The underlying signalling pathway, if conserved, could influence many physiological processes in response to nutritional stress, although any such pathway involved remains unidentified. Conclusions/Significance These studies indicate that general and organ-specific metabolism is transformed in response to mitochondrial dysfunction, including digestive and absorptive functions, and give important clues as to how novel therapeutic strategies for mitochondrial disorders might be developed.


Apoptosis | 2007

The apoptotic microtubule network preserves plasma membrane integrity during the execution phase of apoptosis

José A. Sánchez-Alcázar; Ángeles Rodríguez-Hernández; Mario D. Cordero; Daniel J.M. Fernández-Ayala; Gloria Brea-Calvo; Katherina García; Plácido Navas

It has recently been shown that the microtubule cytoskeleton is reformed during the execution phase of apoptosis. We demonstrate that this microtubule reformation occurs in many cell types and under different apoptotic stimuli. We confirm that the apoptotic microtubule network possesses a novel organization, whose nucleation appears independent of conventional γ-tubulin ring complex containing structures. Our analysis suggests that microtubules are closely associated with the plasma membrane, forming a cortical ring or cellular “cocoon”. Concomitantly other components of the cytoskeleton, such as actin and cytokeratins disassemble. We found that colchicine-mediated disruption of apoptotic microtubule network results in enhanced plasma membrane permeability and secondary necrosis, suggesting that the reformation of a microtubule cytoskeleton plays an important role in preserving plasma membrane integrity during apoptosis. Significantly, cells induced to enter apoptosis in the presence of the pan-caspase inhibitor z-VAD, nevertheless form microtubule-like structures suggesting that microtubule formation is not dependent on caspase activation. In contrast we found that treatment with EGTA-AM, an intracellular calcium chelator, prevents apoptotic microtubule network formation, suggesting that intracellular calcium may play an essential role in the microtubule reformation. We propose that apoptotic microtubule network is required to maintain plasma membrane integrity during the execution phase of apoptosis.


Apoptosis | 2006

Nuclear caspase-3 and capase-7 activation, and Poly(ADP-ribose) polymerase cleavage are early events in camptothecin-induced apoptosis

Ángeles Rodríguez-Hernández; G. Brea-Calvo; Daniel J.M. Fernández-Ayala; Mario D. Cordero; Plácido Navas; José A. Sánchez-Alcázar

Chemotherapy-induced apoptosis by DNA-damaging drugs is thought to be generally dependent on the release of cytochrome c and the subsequent activation of caspase-9 and -3. However, the molecular mechanism of how damaged DNA triggers the apoptotic process is not clear. To better understand the mechanisms underlying this process, we examined drug-induced apoptosis in cultured H-460 cells. Using cell fractionation, western blotting, and immunofluorescence assays, we show that the activation of nuclear caspases-7 and -3, and poly(ADP-ribose) polymerase (PARP) cleavage, are early events in camptothecin-induced apoptosis. Moreover, we demonstrate that these events precede the release of cytochrome c and apoptotic inducing factor, and the activation of caspases 2, 8, 9 and 12. Together our results suggest that drugs acting at the DNA level can initiate apoptosis via nuclear caspase activation.


Biogerontology | 2015

Mitochondrial responsibility in ageing process: innocent, suspect or guilty

Guillermo López-Lluch; Carlos Santos-Ocaña; José A. Sánchez-Alcázar; Daniel J.M. Fernández-Ayala; Claudio Asencio-Salcedo; Juan Carlos Rodríguez-Aguilera; Plácido Navas

Ageing is accompanied by the accumulation of damaged molecules in cells due to the injury produced by external and internal stressors. Among them, reactive oxygen species produced by cell metabolism, inflammation or other enzymatic processes are considered key factors. However, later research has demonstrated that a general mitochondrial dysfunction affecting electron transport chain activity, mitochondrial biogenesis and turnover, apoptosis, etc., seems to be in a central position to explain ageing. This key role is based on several effects from mitochondrial-derived ROS production to the essential maintenance of balanced metabolic activities in old organisms. Several studies have demonstrated caloric restriction, exercise or bioactive compounds mainly found in plants, are able to affect the activity and turnover of mitochondria by increasing biogenesis and mitophagy, especially in postmitotic tissues. Then, it seems that mitochondria are in the centre of metabolic procedures to be modified to lengthen life- or health-span. In this review we show the importance of mitochondria to explain the ageing process in different models or organisms (e.g. yeast, worm, fruitfly and mice). We discuss if the cause of aging is dependent on mitochondrial dysfunction of if the mitochondrial changes observed with age are a consequence of events taking place outside the mitochondrial compartment.


Frontiers in Physiology | 2017

Role of Mitochondrial Reverse Electron Transport in ROS Signaling: Potential Roles in Health and Disease

Filippo Scialò; Daniel J.M. Fernández-Ayala; Alberto Sanz

Reactive Oxygen Species (ROS) can cause oxidative damage and have been proposed to be the main cause of aging and age-related diseases including cancer, diabetes and Parkinsons disease. Accordingly, mitochondria from old individuals have higher levels of ROS. However, ROS also participate in cellular signaling, are instrumental for several physiological processes and boosting ROS levels in model organisms extends lifespan. The current consensus is that low levels of ROS are beneficial, facilitating adaptation to stress via signaling, whereas high levels of ROS are deleterious because they trigger oxidative stress. Based on this model the amount of ROS should determine the physiological effect. However, recent data suggests that the site at which ROS are generated is also instrumental in determining effects on cellular homeostasis. The best example of site-specific ROS signaling is reverse electron transport (RET). RET is produced when electrons from ubiquinol are transferred back to respiratory complex I, reducing NAD+ to NADH. This process generates a significant amount of ROS. RET has been shown to be instrumental for the activation of macrophages in response to bacterial infection, re-organization of the electron transport chain in response to changes in energy supply and adaptation of the carotid body to changes in oxygen levels. In Drosophila melanogaster, stimulating RET extends lifespan. Here, we review what is known about RET, as an example of site-specific ROS signaling, and its implications for the field of redox biology.


Mitochondrion | 2009

Phenotypic suppression of the Drosophila mitochondrial disease-like mutant tko25t by duplication of the mutant gene in its natural chromosomal context

Esko Kemppainen; Daniel J.M. Fernández-Ayala; Laura Galbraith; Kevin M.C. O’Dell; Howard T. Jacobs

A mutation in the Drosophila gene technical knockout (tko(25t)), encoding mitoribosomal protein S12, phenocopies human mitochondrial disease. We isolated three spontaneous X-dominant suppressors of tko(25t) (designated Weeble), exhibiting almost wild-type phenotype and containing overlapping segmental duplications including the mutant allele, plus a second mitoribosomal protein gene, mRpL14. Ectopic, expressed copies of tko(25t) and mRpL14 conferred no phenotypic suppression. When placed over a null allele of tko, Weeble retained the mutant phenotype, even in the presence of additional transgenic copies of tko(25t). Increased mutant gene dosage can thus compensate the mutant phenotype, but only when located in its normal chromosomal context.


Journal of Clinical Medicine | 2017

Biochemical Assessment of Coenzyme Q10 Deficiency

Juan Carlos Rodríguez-Aguilera; Ana Cortés; Daniel J.M. Fernández-Ayala; Plácido Navas

Coenzyme Q10 (CoQ10) deficiency syndrome includes clinically heterogeneous mitochondrial diseases that show a variety of severe and debilitating symptoms. A multiprotein complex encoded by nuclear genes carries out CoQ10 biosynthesis. Mutations in any of these genes are responsible for the primary CoQ10 deficiency, but there are also different conditions that induce secondary CoQ10 deficiency including mitochondrial DNA (mtDNA) depletion and mutations in genes involved in the fatty acid β-oxidation pathway. The diagnosis of CoQ10 deficiencies is determined by the decrease of its content in skeletal muscle and/or dermal skin fibroblasts. Dietary CoQ10 supplementation is the only available treatment for these deficiencies that require a rapid and distinct diagnosis. Here we review methods for determining CoQ10 content by HPLC separation and identification using alternative approaches including electrochemical detection and mass spectrometry. Also, we review procedures to determine the CoQ10 biosynthesis rate using labeled precursors.

Collaboration


Dive into the Daniel J.M. Fernández-Ayala's collaboration.

Top Co-Authors

Avatar

Plácido Navas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Guillermo López-Lluch

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Plácido Navas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

José A. Sánchez-Alcázar

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Esko Kemppainen

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Santos-Ocaña

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Gloria Brea-Calvo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge