Daniel J. Mayor
University of Aberdeen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel J. Mayor.
Nature | 2005
John T. Allen; Louise Brown; Richard Sanders; C. M. Moore; A. T. Mustard; S. Fielding; M. Lucas; M. Rixen; Graham Savidge; Stephanie A. Henson; Daniel J. Mayor
Diatoms are unicellular or chain-forming phytoplankton that use silicon (Si) in cell wall construction. Their survival during periods of apparent nutrient exhaustion enhances carbon sequestration in frontal regions of the northern North Atlantic. These regions may therefore have a more important role in the ‘biological pump’ than they have previously been attributed, but how this is achieved is unknown. Diatom growth depends on silicate availability, in addition to nitrate and phosphate, but northern Atlantic waters are richer in nitrate than silicate. Following the spring stratification, diatoms are the first phytoplankton to bloom. Once silicate is exhausted, diatom blooms subside in a major export event. Here we show that, with nitrate still available for new production, the diatom bloom is prolonged where there is a periodic supply of new silicate: specifically, diatoms thrive by ‘mining’ deep-water silicate brought to the surface by an unstable ocean front. The mechanism we present here is not limited to silicate fertilization; similar mechanisms could support nitrate-, phosphate- or iron-limited frontal regions in oceans elsewhere.
Nature | 2014
Sarah L. C. Giering; Richard Sanders; Richard S. Lampitt; Thomas R. Anderson; C. Tamburini; Mehdi Boutrif; Mikhail V. Zubkov; Chris M. Marsay; Stephanie A. Henson; Kevin Saw; Kathryn Cook; Daniel J. Mayor
Photosynthesis in the surface ocean produces approximately 100 gigatonnes of organic carbon per year, of which 5 to 15 per cent is exported to the deep ocean. The rate at which the sinking carbon is converted into carbon dioxide by heterotrophic organisms at depth is important in controlling oceanic carbon storage. It remains uncertain, however, to what extent surface ocean carbon supply meets the demand of water-column biota; the discrepancy between known carbon sources and sinks is as much as two orders of magnitude. Here we present field measurements, respiration rate estimates and a steady-state model that allow us to balance carbon sources and sinks to within observational uncertainties at the Porcupine Abyssal Plain site in the eastern North Atlantic Ocean. We find that prokaryotes are responsible for 70 to 92 per cent of the estimated remineralization in the twilight zone (depths of 50 to 1,000 metres) despite the fact that much of the organic carbon is exported in the form of large, fast-sinking particles accessible to larger zooplankton. We suggest that this occurs because zooplankton fragment and ingest half of the fast-sinking particles, of which more than 30 per cent may be released as suspended and slowly sinking matter, stimulating the deep-ocean microbial loop. The synergy between microbes and zooplankton in the twilight zone is important to our understanding of the processes controlling the oceanic carbon sink.
Trends in Ecology and Evolution | 2010
Alan J. Jamieson; Toyonobu Fujii; Daniel J. Mayor; Martin Solan; Imants G. Priede
Hadal trenches account for the deepest 45% of the oceanic depth range and host active and diverse biological communities. Advances in our understanding of hadal community structure and function have, until recently, relied on technologies that were unable to document ecological information. Renewed international interest in exploring the deepest marine environment on Earth provides impetus to re-evaluate hadal community ecology. We review the abiotic and biotic characteristics of trenches and offer a contemporary perspective of trench ecology. The application of existing, rather than the generation of novel, ecological theory offers the best prospect of understanding deep ocean ecology.
The ISME Journal | 2012
Daniel J. Mayor; Barry Thornton; Steve Hay; Alain F. Zuur; Graeme W. Nicol; Jenna M McWilliam; Ursula Witte
Deep-sea sediments cover ∼70% of Earths surface and represent the largest interface between the biological and geological cycles of carbon. Diatoms and zooplankton faecal pellets naturally transport organic material from the upper ocean down to the deep seabed, but how these qualitatively different substrates affect the fate of carbon in this permanently cold environment remains unknown. We added equal quantities of 13C-labelled diatoms and faecal pellets to a cold water (−0.7 °C) sediment community retrieved from 1080 m in the Faroe-Shetland Channel, Northeast Atlantic, and quantified carbon mineralization and uptake by the resident bacteria and macrofauna over a 6-day period. High-quality, diatom-derived carbon was mineralized >300% faster than that from low-quality faecal pellets, demonstrating that qualitative differences in organic matter drive major changes in the residence time of carbon at the deep seabed. Benthic bacteria dominated biological carbon processing in our experiments, yet showed no evidence of resource quality-limited growth; they displayed lower growth efficiencies when respiring diatoms. These effects were consistent in contrasting months. We contend that respiration and growth in the resident sediment microbial communities were substrate and temperature limited, respectively. Our study has important implications for how future changes in the biochemical makeup of exported organic matter will affect the balance between mineralization and sequestration of organic carbon in the largest ecosystem on Earth.
BioEssays | 2014
Daniel J. Mayor; Richard Sanders; Sarah L. C. Giering; Thomas R. Anderson
Sinking organic particles transfer ∼10 gigatonnes of carbon into the deep ocean each year, keeping the atmospheric CO2 concentration significantly lower than would otherwise be the case. The exact size of this effect is strongly influenced by biological activity in the oceans twilight zone (∼50–1,000 m beneath the surface). Recent work suggests that the resident zooplankton fragment, rather than ingest, the majority of encountered organic particles, thereby stimulating bacterial proliferation and the deep‐ocean microbial food web. Here we speculate that this apparently counterintuitive behaviour is an example of ‘microbial gardening’, a strategy that exploits the enzymatic and biosynthetic capabilities of microorganisms to facilitate the ‘gardeners’ access to a suite of otherwise unavailable compounds that are essential for metazoan life. We demonstrate the potential gains that zooplankton stand to make from microbial gardening using a simple steady state model, and we suggest avenues for future research.
Environmental Science & Technology | 2010
Daniel J. Mayor; Alain F. Zuur; Martin Solan; Graeme I. Paton; Ken Killham
The factors affecting patterns of benthic [seabed] biology and chemistry around 50 Scottish fish farms were investigated using linear mixed-effects models that account for inherent correlations between observations from the same farm. The abundance of benthic macrofauna and sediment concentrations of organic carbon were both influenced by a significant, albeit weak, interaction between farm size, defined as the maximum weight of fish permitted on site at any one time, and current speed. Above a farm size threshold of between 800 and 1000 t, the magnitude of effects at farms located in areas of elevated current speeds were greater than at equivalent farms located in more quiescent waters. Sediment concentrations of total organic matter were influenced by an interaction between distance and depth, indicating that wind-driven resuspension events may help reduce the accumulation of organic waste at farms located in shallow waters. The analyses presented here demonstrate that the production and subsequent fate of organic waste at fish farms is more complex than is often assumed; in isolation, current speed, water depth, and farr size are not necessarily good predictors of benthic impact.
Frontiers in Microbiology | 2017
Thomas R. Anderson; David W. Pond; Daniel J. Mayor
Detritus represents an important pool in the global carbon cycle, providing a food source for detritivorous invertebrates that are conspicuous components of almost all ecosystems. Our knowledge of how these organisms meet their nutritional demands on a diet that is typically comprised of refractory, carbon-rich compounds nevertheless remains incomplete. “Trophic upgrading” of detritus by the attached microbial community (enhancement of zooplankton diet by the inclusion of heterotrophic protozoans) represents a potential source of nutrition for detritivores as both bacteria and their flagellated protistan predators are capable of biosynthesizing essential micronutrients such as polyunsaturated fatty acids (PUFAs). There is however a trade-off because although microbes enhance the substrate in terms of its micronutrient content, the quantity of organic carbon is diminished though metabolic losses as energy passes through the microbial food web. Here, we develop a simple stoichiometric model to examine this trade-off in the nutrition of detritivorous copepods inhabiting the mesopelagic zone of the ocean, focusing on their requirements for carbon and an essential PUFA, docosahexaenoic acid (DHA). Results indicate that feeding on microbes may be a highly favorable strategy for these invertebrates, although the potential for carbon to become limiting when consuming a microbial diet exists because of the inefficiencies of trophic transfer within the microbial food web. Our study highlights the need for improved knowledge at the detritus-microbe-metazoan interface, including interactions between the physiology and ecology of the associated organisms.
Scientific Reports | 2015
Daniel J. Mayor; Ulf Sommer; Kathryn Cook; Mark R. Viant
Marine copepods are central to the productivity and biogeochemistry of marine ecosystems. Nevertheless, the direct and indirect effects of climate change on their metabolic functioning remain poorly understood. Here, we use metabolomics, the unbiased study of multiple low molecular weight organic metabolites, to examine how the physiology of Calanus spp. is affected by end-of-century global warming and ocean acidification scenarios. We report that the physiological stresses associated with incubation without food over a 5-day period greatly exceed those caused directly by seawater temperature or pH perturbations. This highlights the need to contextualise the results of climate change experiments by comparison to other, naturally occurring stressors such as food deprivation, which is being exacerbated by global warming. Protein and lipid metabolism were up-regulated in the food-deprived animals, with a novel class of taurine-containing lipids and the essential polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid and docosahexaenoic acid, changing significantly over the duration of our experiment. Copepods derive these PUFAs by ingesting diatoms and flagellated microplankton respectively. Climate-driven changes in the productivity, phenology and composition of microplankton communities, and hence the availability of these fatty acids, therefore have the potential to influence the ability of copepods to survive starvation and other environmental stressors.
PLOS ONE | 2014
David W. Pond; Geraint A. Tarling; Daniel J. Mayor
Marine planktonic copepods of the order Calanoida are central to the ecology and productivity of high latitude ecosystems, representing the interface between primary producers and fish. These animals typically undertake a seasonal vertical migration into the deep sea, where they remain dormant for periods of between three and nine months. Descending copepods are subject to low temperatures and increased hydrostatic pressures. Nothing is known about how these organisms adapt their membranes to these environmental stressors. We collected copepods (Calanoides acutus) from the Southern Ocean at depth horizons ranging from surface waters down to 1000 m. Temperature and/or pressure both had significant, additive effects on the overall composition of the membrane phospholipid fatty acids (PLFAs) in C. acutus. The most prominent constituent of the PLFAs, the polyunsaturated fatty acid docosahexanoic acid [DHA – 22:6(n-3)], was affected by a significant interaction between temperature and pressure. This moiety increased with pressure, with the rate of increase being greater at colder temperatures. We suggest that DHA is key to the physiological adaptations of vertically migrating zooplankton, most likely because the biophysical properties of this compound are suited to maintaining membrane order in the cold, high pressure conditions that persist in the deep sea. As copepods cannot synthesise DHA and do not feed during dormancy, sufficient DHA must be accumulated through ingestion before migration is initiated. Climate-driven changes in the timing and abundance of the flagellated microplankton that supply DHA to copepods have major implications for the capacity of these animals to undertake their seasonal life cycle successfully.
Environmental Research | 2011
Daniel J. Mayor; Martin Solan
Fish farms typically generate a localised gradient of both organic and inorganic pollutants in the underlying sediments. The factors governing the extent of such impacts remain poorly understood, particularly when multiple sites are considered. We used regression-type techniques to examine the drivers of sediment chemistry patterns around five Scottish fish farms that ranged in size (120-2106 tonnes) and fish species, but were located within <40 km of each other. Correlations between observations made at the same farm illustrate that between-site variability can be high, even at this regional-scale. These effects must be accounted for when comparing the effects of fish farming at different locations. All measured chemical parameters declined rapidly as a function of distance from the cage edge, with the rate of decline depending on local current speeds. Only phosphorus concentrations increased directly with farm size. Increasing current speeds at farms <900 tonnes reduced the accumulation of organic carbon in the underlying sediments, whereas the opposite occurred at larger farms. The counterintuitive effect of current speed at farms above the threshold size suggests that the physical properties of the seabed at these locations favour the accumulation of organic wastes and/or that the underlying communities have a lower assimilative capacity. These imply that the environmental efficiency of fish farming activities may be further optimised by taking into account the interaction between current speed, substrate complexity and the functional characteristics of the benthos. Collectively, our analyses demonstrate that the fate of fish farm-derived wastes is complex and highlight the need for site-specific management techniques.