Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J. Puleston is active.

Publication


Featured researches published by Daniel J. Puleston.


eLife | 2014

Autophagy is a critical regulator of memory CD8+ T cell formation

Daniel J. Puleston; Hanlin Zhang; Timothy J. Powell; Elina Lipina; Stuart Sims; Isabel Panse; Alexander Scarth Watson; Vincenzo Cerundolo; Alain Townsend; Paul Klenerman; Anna Katharina Simon

During infection, CD8+ T cells initially expand then contract, leaving a small memory pool providing long lasting immunity. While it has been described that CD8+ T cell memory formation becomes defective in old age, the cellular mechanism is largely unknown. Autophagy is a major cellular lysosomal degradation pathway of bulk material, and levels are known to fall with age. In this study, we describe a novel role for autophagy in CD8+ T cell memory formation. Mice lacking the autophagy gene Atg7 in T cells failed to establish CD8+ T cell memory to influenza and MCMV infection. Interestingly, autophagy levels were diminished in CD8+ T cells from aged mice. We could rejuvenate CD8+ T cell responses in elderly mice in an autophagy dependent manner using the compound spermidine. This study reveals a cell intrinsic explanation for poor CD8+ T cell memory in the elderly and potentially offers novel immune modulators to improve aged immunity. DOI: http://dx.doi.org/10.7554/eLife.03706.001


Journal of Clinical Investigation | 2014

p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells

Sian M. Henson; Alessio Lanna; Natalie E. Riddell; Ornella Franzese; Richard Macaulay; Stephen J. Griffiths; Daniel J. Puleston; Alexander Scarth Watson; Anna Katharina Simon; Sharon A. Tooze; Arne N. Akbar

T cell senescence is thought to contribute to immune function decline, but the pathways that mediate senescence in these cells are not clear. Here, we evaluated T cell populations from healthy volunteers and determined that human CD8+ effector memory T cells that reexpress the naive T cell marker CD45RA have many characteristics of cellular senescence, including decreased proliferation, defective mitochondrial function, and elevated levels of both ROS and p38 MAPK. Despite their apparent senescent state, we determined that these cells secreted high levels of both TNF-α and IFN-γ and showed potent cytotoxic activity. We found that the senescent CD45RA-expressing population engaged anaerobic glycolysis to generate energy for effector functions. Furthermore, inhibition of p38 MAPK signaling in senescent CD8+ T cells increased their proliferation, telomerase activity, mitochondrial biogenesis, and fitness; however, the extra energy required for these processes did not arise from increased glucose uptake or oxidative phosphorylation. Instead, p38 MAPK blockade in these senescent cells induced an increase in autophagy through enhanced interactions between p38 interacting protein (p38IP) and autophagy protein 9 (ATG9) in an mTOR-independent manner. Together, our findings describe fundamental metabolic requirements of senescent primary human CD8+ T cells and demonstrate that p38 MAPK blockade reverses senescence via an mTOR-independent pathway.


Immunology | 2014

Autophagy in the immune system.

Daniel J. Puleston; Anna Katharina Simon

Autophagy is an intracellular homeostatic mechanism important for the degradation of waste components from the cytoplasm in acidic lysosomal compartments. Originally, surplus parts of the cytoplasm that acted as targets for autophagy were thought to comprise cellular organelles and proteins, but this has now extended to include a range of pathogens with particular emphasis on intracellular bacteria. The finding that autophagy can sequester intracellular bacteria and mediate their destruction has opened the door to a wider role for autophagy as an effector arm of the immune system. In innate immunity, autophagy works downstream of pattern recognition receptors where it facilitates a number of effector responses, including cytokine production and phagocytosis. Autophagy is also able to intersect pathways of innate and adaptive immunity through its potential to deliver antigens for antigen presentation. Autophagy provides a substantial source of antigens for loading onto MHC class II molecules and it may be important in dendritic cells for cross‐priming to CD8+ T cells. In lymphocytes, autophagy is essential for cell survival and homeostasis, particularly in T cells. In the thymus, autophagy can modulate the selection of certain CD4+ T‐cell clones while in the bone marrow autophagy is needed for B‐cell development at specific stages. However, large holes exist in our knowledge as to how autophagy regulates, and is regulated by, the immune system and it is important to now apply what we have gleaned from in vitro studies to how autophagy operates in vivo in the setting of natural infection.


Autophagy | 2015

Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy

Majid S. Jabir; Lee Hopkins; Neil D. Ritchie; Ihsan Ullah; Hannah K. Bayes; Dong Li; Panagiotis Tourlomousis; Alison Lupton; Daniel J. Puleston; Anna Katharina Simon; Clare E. Bryant; Thomas J. Evans

The nucleotide-binding domain, leucine-rich repeat containing family caspase recruitment domain containing 4 (NLRC4) inflammasome can be activated by pathogenic bacteria via products translocated through the microbial type III secretion apparatus (T3SS). Recent work has shown that activation of the NLRP3 inflammasome is downregulated by autophagy, but the influence of autophagy on NLRC4 activation is unclear. We set out to determine how autophagy might influence this process, using the bacterium Pseudomonas aeruginosa, which activates the NLRC4 inflammasome via its T3SS. Infection resulted in T3SS-dependent mitochondrial damage with increased production of reactive oxygen intermediates and release of mitochondrial DNA. Inhibiting mitochondrial reactive oxygen release or degrading intracellular mitochondrial DNA abrogated NLRC4 inflammasome activation. Moreover, macrophages lacking mitochondria failed to activate NLRC4 following infection. Removal of damaged mitochondria by autophagy significantly attenuated NLRC4 inflammasome activation. Mitochondrial DNA bound specifically to NLRC4 immunoprecipitates and transfection of mitochondrial DNA directly activated the NLRC4 inflammasome; oxidation of the DNA enhanced this effect. Manipulation of autophagy altered the degree of inflammasome activation and inflammation in an in vivo model of P. aeruginosa infection. Our results reveal a novel mechanism contributing to NLRC4 activation by P. aeruginosa via mitochondrial damage and release of mitochondrial DNA triggered by the bacterial T3SS that is downregulated by autophagy.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Essential role for autophagy during invariant NKT cell development

Mariolina Salio; Daniel J. Puleston; Till S. M. Mathan; Dawn Shepherd; Amanda J. Stranks; Eleni Adamopoulou; Natacha Veerapen; Gurdyal S. Besra; Georg A. Holländer; Anna Katharina Simon; Vincenzo Cerundolo

Significance Autophagy is an evolutionarily conserved catabolic process essential to maintaining cellular homeostasis through the breakdown and recycling of damaged organelles and long-lived proteins. We report that autophagy plays an essential cell-intrinsic role in maintaining the survival of a subset of innate-like cells known as invariant natural killer T (iNKT) cells. Autophagy deficiency prevents transition to a quiescent state after population expansion of thymic iNKT cells. Hence, autophagy-deficient iNKT cells accumulate mitochondria and oxygen radicals and subsequently die of apoptosis. Autophagy is an evolutionarily conserved cellular homeostatic pathway essential for development, immunity, and cell death. Although autophagy modulates MHC antigen presentation, it remains unclear whether autophagy defects impact on CD1d lipid loading and presentation to invariant natural killer T (iNKT) cells and on iNKT cell differentiation in the thymus. Furthermore, it remains unclear whether iNKT and conventional T cells have similar autophagy requirements for differentiation, survival, and/or activation. We report that, in mice with a conditional deletion of the essential autophagy gene Atg7 in the T-cell compartment (CD4 Cre-Atg7−/−), thymic iNKT cell development—unlike conventional T-cell development—is blocked at an early stage and mature iNKT cells are absent in peripheral lymphoid organs. The defect is not due to altered loading of intracellular iNKT cell agonists; rather, it is T-cell–intrinsic, resulting in enhanced susceptibility of iNKT cells to apoptosis. We show that autophagy increases during iNKT cell thymic differentiation and that it developmentally regulates mitochondrial content through mitophagy in the thymus of mice and humans. Autophagy defects result in the intracellular accumulation of mitochondrial superoxide species and subsequent apoptotic cell death. Although autophagy-deficient conventional T cells develop normally, they show impaired peripheral survival, particularly memory CD8+ T cells. Because iNKT cells, unlike conventional T cells, differentiate into memory cells while in the thymus, our results highlight a unique autophagy-dependent metabolic regulation of adaptive and innate T cells, which is required for transition to a quiescent state after population expansion.


Cell death discovery | 2015

Autophagy limits proliferation and glycolytic metabolism in acute myeloid leukemia.

Alexander Scarth Watson; Thomas Riffelmacher; Amanda J. Stranks; Owen Williams; J de Boer; K Cain; M MacFarlane; Joanna F. McGouran; Benedikt M. Kessler; S Khandwala; Onima Chowdhury; Daniel J. Puleston; Kanchan Phadwal; Monika Mortensen; David J. P. Ferguson; Elizabeth J. Soilleux; Petter S. Woll; Sew Jacobsen; Anna Katharina Simon

Decreased autophagy contributes to malignancies; however, it is unclear how autophagy has an impact on tumor growth. Acute myeloid leukemia (AML) is an ideal model to address this as (i) patient samples are easily accessible, (ii) the hematopoietic stem and progenitor cells (HSPC) where transformation occurs is well characterized and (iii) loss of the key autophagy gene Atg7 in HSPCs leads to a lethal pre-leukemic phenotype in mice. Here we demonstrate that loss of Atg5 results in an identical HSPC phenotype as loss of Atg7, confirming a general role for autophagy in HSPC regulation. Compared with more committed/mature hematopoietic cells, healthy human and mouse HSPCs displayed enhanced basal autophagic flux, limiting mitochondrial damage and reactive oxygen species in this long-lived population. Taken together, with our previous findings these data are compatible with autophagy-limiting leukemic transformation. In line with this, autophagy gene losses are found within chromosomal regions that are commonly deleted in human AML. Moreover, human AML blasts showed reduced expression of autophagy genes and displayed decreased autophagic flux with accumulation of unhealthy mitochondria, indicating that deficient autophagy may be beneficial to human AML. Crucially, heterozygous loss of autophagy in an MLL–ENL model of AML led to increased proliferation in vitro, a glycolytic shift and more aggressive leukemias in vivo. With autophagy gene losses also identified in multiple other malignancies, these findings point to low autophagy, providing a general advantage for tumor growth.


Cell Metabolism | 2017

Ancillary Activity: Beyond Core Metabolism in Immune Cells

Daniel J. Puleston; Matteo Villa; Erika L. Pearce

Immune cell function and fate are intimately linked to engagement of metabolic pathways. The contribution of core metabolic pathways to immune cell bioenergetics has been vigorously investigated in recent years. However, precisely how other peripheral metabolic pathways support immune cells beyond energy generation is less well understood. Here we survey the literature and highlight recent advances in our understanding of several ancillary metabolic pathways and how they support processes beyond ATP production and ultimately contribute to protective immunity.


CSH Protocols | 2015

Detection of Mitochondrial Mass, Damage, and Reactive Oxygen Species by Flow Cytometry

Daniel J. Puleston

The reagents and procedures highlighted here will give the investigators an indication of the health status and volume of mitochondria in primary cells and cell lines through the use of a number of cell-permeable dyes. Mitochondrial volume can be monitored by using the probe MitoTracker Green FM. This reagent labels mitochondria in a manner that is independent of the membrane potential, therefore providing a readout relating purely to the mitochondrial mass of the cell. In contrast, MitoTracker Red CMXRos, tetramethylrhodamine methyl ester, and 10-N-nonyl acridine orange label mitochondria in a manner dependent on the membrane potential, thus giving an indication of mitochondrial stress. Using MitoSOX Red, it is also possible to analyze the production of the mitochondrial superoxide anion. Like the MitoTracker probes, MitoSOX Red is taken up passively by cells. In the mitochondria, the probe is oxidized by superoxide, resulting in the emission of red fluorescence.


Microbial Cell | 2015

New roles for autophagy and spermidine in T cells.

Daniel J. Puleston; Anna Katharina Simon

The conserved lysosomal degradation pathway autophagy is now recognised as an essential cog in immune function. While functionally widespread in the innate immune system, knowledge of its roles in adaptive immunity is more limited. Although autophagy has been implicated in naïve T cell homeostasis, its requirement in antigen-specific T cells during infection was unknown. Using a murine model where the essential autophagy gene Atg7 is deleted in the T cell lineage, we have shown that autophagy is dispensable for effector CD8+ T cell responses, but crucial for the formation of memory CD8+ T cells. Here, we suggest reasons why autophagy might be important for the formation of long-lasting immunity. Like in the absence of autophagy, T cell memory formation during ageing is also defective. We observed diminished autophagy levels in T cells from aged mice, linking autophagy to immunosenescence. Importantly, T cell responses to influenza vaccination could be significantly improved using the autophagy-inducing compound spermidine. These results suggest the autophagy pathway as a desirable target to improve aged immunity and modulate T cell function.


CSH Protocols | 2015

Techniques for the Detection of Autophagy in Primary Mammalian Cells.

Daniel J. Puleston; Kanchan Phadwal; Alexander Scarth Watson; Elizabeth J. Soilleux; Svetlana Bortnik; Sharon M. Gorski; Nicholas T. Ktistakis; Anna Katharina Simon

Autophagy is a lysosomal catabolic pathway responsible for the degradation of cytoplasmic constituents. Autophagy is primarily a survival pathway for recycling cellular material in times of nutrient starvation, and in response to hypoxia, endoplasmic reticulum stress, and other stresses, regulated through the mammalian target of rapamycin pathway. The proteasomal pathway is responsible for degradation of proteins, whereas autophagy can degrade cytoplasmic material in bulk, including whole organelles such as mitochondria (mitophagy), bacteria (xenophagy), or lipids (lipophagy). Although signs of autophagy can be present during cell death, it remains controversial whether autophagy can execute cell death in vivo. Here, we will introduce protocols for detecting autophagy in mammalian primary cells by using western blots, immunofluorescence, immunohistochemistry, flow cytometry, and imaging flow cytometry.

Collaboration


Dive into the Daniel J. Puleston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda J. Stranks

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Alessio Lanna

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arne N. Akbar

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Li

University of Glasgow

View shared research outputs
Researchain Logo
Decentralizing Knowledge