Daniel J. Rolfe
Science and Technology Facilities Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel J. Rolfe.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Alexandre Martinière; Irene Lavagi; Gayathri Nageswaran; Daniel J. Rolfe; Lilly Maneta-Peyret; Doan-Trung Luu; Stanley W. Botchway; Stephen E. D. Webb; Sébastien Mongrand; Christophe Maurel; Marisa L. Martin-Fernandez; Jürgen Kleine-Vehn; Jiri Friml; Patrick Moreau; John Runions
A cell membrane can be considered a liquid-phase plane in which lipids and proteins theoretically are free to diffuse. Numerous reports, however, describe retarded diffusion of membrane proteins in animal cells. This anomalous diffusion results from a combination of structuring factors including protein–protein interactions, cytoskeleton corralling, and lipid organization into microdomains. In plant cells, plasma-membrane (PM) proteins have been described as relatively immobile, but the control mechanisms that structure the PM have not been studied. Here, we use fluorescence recovery after photobleaching to estimate mobility of a set of minimal PM proteins. These proteins consist only of a PM-anchoring domain fused to a fluorescent protein, but their mobilities remained limited, as is the case for many full-length proteins. Neither the cytoskeleton nor membrane microdomain structure was involved in constraining the diffusion of these proteins. The cell wall, however, was shown to have a crucial role in immobilizing PM proteins. In addition, by single-molecule fluorescence imaging we confirmed that the pattern of cellulose deposition in the cell wall affects the trajectory and speed of PM protein diffusion. Regulation of PM protein dynamics by the plant cell wall can be interpreted as a mechanism for regulating protein interactions in processes such as trafficking and signal transduction.
PLOS ONE | 2013
Laura C. Zanetti-Domingues; Christopher J. Tynan; Daniel J. Rolfe; David T. Clarke; Marisa L. Martin-Fernandez
Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion.
Molecular and Cellular Biology | 2011
Christopher J. Tynan; Selene K. Roberts; Daniel J. Rolfe; David T. Clarke; Hannes H. Loeffler; Johannes Kästner; Martyn Winn; Peter J. Parker; Marisa L. Martin-Fernandez
ABSTRACT The ability of epidermal growth factor receptor (EGFR) to control cell fate is defined by its affinity for ligand. Current models suggest that ligand-binding heterogeneity arises from negative cooperativity in signaling receptor dimers, for which the asymmetry of the extracellular region of the Drosophila EGFR has recently provided a structural basis. However, no asymmetry is apparent in the isolated extracellular region of the human EGFR. Human EGFR also differs from the Drosophila EGFR in that negative cooperativity is found only in full-length receptors in cells. To gain structural insights into the human EGFR in situ, we developed an approach based on quantitative Förster resonance energy transfer (FRET) imaging, combined with Monte Carlo and molecular dynamics simulations, to probe receptor conformation in epithelial cells. We experimentally demonstrate a high-affinity ligand-binding human EGFR conformation consistent with the extracellular region aligned flat on the plasma membrane. We explored the relevance of this conformation to ligand-binding heterogeneity and found that the asymmetry of this structure shares key features with that of the Drosophila EGFR, suggesting that the structural basis for negative cooperativity is conserved from invertebrates to humans but that in human EGFR the extracellular region asymmetry requires interactions with the plasma membrane.
European Biophysics Journal | 2011
Daniel J. Rolfe; Charles McLachlan; Michael Hirsch; Sarah R. Needham; Christopher J. Tynan; Stephen E. D. Webb; Marisa L. Martin-Fernandez; Michael P. Hobson
Characterisation of multi-protein interactions in cellular networks can be achieved by optical microscopy using multidimensional single molecule fluorescence imaging. Proteins of different species, individually labelled with a single fluorophore, can be imaged as isolated spots (features) of different colour light in different channels, and their diffusive behaviour in cells directly measured through time. Challenges in data analysis have, however, thus far hindered its application in biology. A set of methods for the automated analysis of multidimensional single molecule microscopy data from cells is presented, incorporating Bayesian segmentation-based feature detection, image registration and particle tracking. Single molecules of different colours can be simultaneously detected in noisy, high background data with an arbitrary number of channels, acquired simultaneously or time-multiplexed, and then tracked through time. The resulting traces can be further analysed, for example to detect intensity steps, count discrete intensity levels, measure fluorescence resonance energy transfer (FRET) or changes in polarisation. Examples are shown illustrating the use of the algorithms in investigations of the epidermal growth factor receptor (EGFR) signalling network, a key target for cancer therapeutics, and with simulated data.
Science Signaling | 2014
Tai Kiuchi; Elena Ortiz-Zapater; James Monypenny; Daniel R. Matthews; Lan K. Nguyen; Jody Barbeau; Oana Coban; Katherine Lawler; Brian Burford; Daniel J. Rolfe; Emanuele de Rinaldis; Dimitra Dafou; Michael A. Simpson; Natalie Woodman; Sarah Pinder; Cheryl Gillett; Viviane Devauges; Simon P. Poland; Gilbert O. Fruhwirth; Pierfrancesco Marra; Ykelien L. Boersma; Andreas Plückthun; William J. Gullick; Yosef Yarden; George Santis; Martyn Winn; Boris N. Kholodenko; Marisa L. Martin-Fernandez; Peter J. Parker; Andrew Tutt
Dimerization of EGFR with an ErbB4 receptor variant increases growth factor–induced migration of breast cancer cells. Drug Resistance Through Dimerization The epidermal growth factor receptor (EGFR) is often targeted in various cancers, including breast cancer. The EGFR can dimerize with related receptors in the ErbB family, and formation of these heterodimers is associated with the development of resistance to EGFR inhibitors. Kiuchi et al. found that binding of EGFR to a naturally occurring variant of the receptor ErbB4 prevented a ubiquitin E3 ligase from associating with EGFR and triggering its breakdown. The migration of breast cancer cells to EGFR ligands was increased when EGFR was overexpressed with the ErbB4 variant, but not with a mutant that could not dimerize with EGFR. Furthermore, the transcript for this ErbB4 variant was increased in a subset of breast cancer patients. The epidermal growth factor receptor (EGFR) is a member of the ErbB family that can promote the migration and proliferation of breast cancer cells. Therapies that target EGFR can promote the dimerization of EGFR with other ErbB receptors, which is associated with the development of drug resistance. Understanding how interactions among ErbB receptors alter EGFR biology could provide avenues for improving cancer therapy. We found that EGFR interacted directly with the CYT1 and CYT2 variants of ErbB4 and the membrane-anchored intracellular domain (mICD). The CYT2 variant, but not the CYT1 variant, protected EGFR from ligand-induced degradation by competing with EGFR for binding to a complex containing the E3 ubiquitin ligase c-Cbl and the adaptor Grb2. Cultured breast cancer cells overexpressing both EGFR and ErbB4 CYT2 mICD exhibited increased migration. With molecular modeling, we identified residues involved in stabilizing the EGFR dimer. Mutation of these residues in the dimer interface destabilized the complex in cells and abrogated growth factor–stimulated cell migration. An exon array analysis of 155 breast tumors revealed that the relative mRNA abundance of the ErbB4 CYT2 variant was increased in ER+ HER2– breast cancer patients, suggesting that our findings could be clinically relevant. We propose a mechanism whereby competition for binding to c-Cbl in an ErbB signaling heterodimer promotes migration in response to a growth factor gradient.
PLOS ONE | 2013
Michael Hirsch; Richard J. Wareham; Marisa L. Martin-Fernandez; Michael P. Hobson; Daniel J. Rolfe
Electron multiplication charge-coupled devices (EMCCD) are widely used for photon counting experiments and measurements of low intensity light sources, and are extensively employed in biological fluorescence imaging applications. These devices have a complex statistical behaviour that is often not fully considered in the analysis of EMCCD data. Robust and optimal analysis of EMCCD images requires an understanding of their noise properties, in particular to exploit fully the advantages of Bayesian and maximum-likelihood analysis techniques, whose value is increasingly recognised in biological imaging for obtaining robust quantitative measurements from challenging data. To improve our own EMCCD analysis and as an effort to aid that of the wider bioimaging community, we present, explain and discuss a detailed physical model for EMCCD noise properties, giving a likelihood function for image counts in each pixel for a given incident intensity, and we explain how to measure the parameters for this model from various calibration images.
Nature Communications | 2016
Sarah R. Needham; Selene K. Roberts; Anton Arkhipov; Venkatesh Mysore; Christopher J. Tynan; Laura C. Zanetti-Domingues; Eric T. Kim; Valeria Losasso; Dimitrios Korovesis; Michael Hirsch; Daniel J. Rolfe; David T. Clarke; Martyn Winn; Alireza Lajevardipour; Andrew H. A. Clayton; Linda J. Pike; Michela Perani; Peter J. Parker; Yibing Shan; David E. Shaw; Marisa L. Martin-Fernandez
Epidermal growth factor receptor (EGFR) signalling is activated by ligand-induced receptor dimerization. Notably, ligand binding also induces EGFR oligomerization, but the structures and functions of the oligomers are poorly understood. Here, we use fluorophore localization imaging with photobleaching to probe the structure of EGFR oligomers. We find that at physiological epidermal growth factor (EGF) concentrations, EGFR assembles into oligomers, as indicated by pairwise distances of receptor-bound fluorophore-conjugated EGF ligands. The pairwise ligand distances correspond well with the predictions of our structural model of the oligomers constructed from molecular dynamics simulations. The model suggests that oligomerization is mediated extracellularly by unoccupied ligand-binding sites and that oligomerization organizes kinase-active dimers in ways optimal for auto-phosphorylation in trans between neighbouring dimers. We argue that ligand-induced oligomerization is essential to the regulation of EGFR signalling.
Monthly Notices of the Royal Astronomical Society | 2003
A. R. King; Daniel J. Rolfe; K. Schenker
ABSTRACT We show that long–period dwarf novae offer a promising route for making Type Iasupernovae. For typical dwarf nova duty cycles d ∼ 0.1 − 0.01, mass is accreted bythe white dwarf mainly during dwarf nova outbursts at rates allowing steady nuclearburning of most of the accreted matter. Mass gains up to ∼ 0.4M ⊙ are possible in thisway. Although these are too small to allow a 0.7M ⊙ WD to reach the Chandrasekharmass, they are sufficient if the WD grew to >∼1M ⊙ in a previous episode of thermal–timescale mass transfer, i.e. for those long–period dwarf novae which descend fromsupersoft binaries. A further advantage of this picture is that the supernova alwaysoccurs in a binary of small secondary/primary mass ratio, with the secondary havingverylittle remaining hydrogen.Both features greatlyreduce the possibility of hydrogencontamination of the supernova ejecta.Key words: accretion, accretion discs – binaries: general – X–rays: binaries – stars:dwarf novae – supernovae: general – galaxies: stellar content – cosmology: distancescale
Monthly Notices of the Royal Astronomical Society | 2001
Daniel J. Rolfe; C. A. Haswell; Joseph Patterson
We use the hotspot eclipse times of the newly discovered deeply eclipsing dwarf nova IY UMa to trace out the shape of its disc during the late superhump era. We find an eccentric disc. We show that the brightness of the stream–disc impact region varies as expected with |ΔV|2, where ΔV is the relative velocity of the stream with respect to the velocity of the disc at the impact point. We conclude that the hotspot is the source of late superhump light.
PLOS ONE | 2013
Sarah R. Needham; Michael Hirsch; Daniel J. Rolfe; David T. Clarke; Laura C. Zanetti-Domingues; Richard J. Wareham; Marisa L. Martin-Fernandez
Detecting receptor dimerisation and other forms of clustering on the cell surface depends on methods capable of determining protein-protein separations with high resolution in the ∼10–50 nm range. However, this distance range poses a significant challenge because it is too large for fluorescence resonance energy transfer and contains distances too small for all other techniques capable of high-resolution in cells. Here we have adapted the technique of fluorophore localisation imaging with photobleaching to measure inter-receptor separations in the cellular environment. Using the epidermal growth factor receptor, a key cancer target molecule, we demonstrate ∼10 nm resolution while continuously covering the range of ∼10–80 nm. By labelling the receptor on cells expressing low receptor numbers with a fluorescent antagonist we have found inter-receptor separations all the way up from 8 nm to 59 nm. Our data are consistent with epidermal growth factor receptors being able to form homo-polymers of at least 10 receptors in the absence of activating ligands.