Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J. Salkeld is active.

Publication


Featured researches published by Daniel J. Salkeld.


Ecology Letters | 2013

A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic.

Daniel J. Salkeld; Kerry A. Padgett; James Holland Jones

Abstract Zoonotic pathogens are significant burdens on global public health. Because they are transmitted to humans from non‐human animals, the transmission dynamics of zoonoses are necessarily influenced by the ecology of their animal hosts and vectors. The ‘dilution effect’ proposes that increased species diversity reduces disease risk, suggesting that conservation and public health initiatives can work synergistically to improve human health and wildlife biodiversity. However, the meta‐analysis that we present here indicates a weak and highly heterogeneous relationship between host biodiversity and disease. Our results suggest that disease risk is more likely a local phenomenon that relies on the specific composition of reservoir hosts and vectors, and their ecology, rather than patterns of species biodiversity.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Plague outbreaks in prairie dog populations explained by percolation thresholds of alternate host abundance

Daniel J. Salkeld; Marcel Salathé; Paul Stapp; James Holland Jones

Highly lethal pathogens (e.g., hantaviruses, hendra virus, anthrax, or plague) pose unique public-health problems, because they seem to periodically flare into outbreaks before disappearing into long quiescent phases. A key element to their possible control and eradication is being able to understand where they persist in the latent phase and how to identify the conditions that result in sporadic epidemics or epizootics. In American grasslands, plague, caused by Yersinia pestis, exemplifies this quiescent–outbreak pattern, because it sporadically erupts in epizootics that decimate prairie dog (Cynomys ludovicianus) colonies, yet the causes of outbreaks and mechanisms for interepizootic persistence of this disease are poorly understood. Using field data on prairie community ecology, flea behavior, and plague-transmission biology, we find that plague can persist in prairie-dog colonies for prolonged periods, because host movement is highly spatially constrained. The abundance of an alternate host for disease vectors, the grasshopper mouse (Onychomys leucogaster), drives plague outbreaks by increasing the connectivity of the prairie dog hosts and therefore, permitting percolation of the disease throughout the primary host population. These results offer an alternative perspective on plagues ecology (i.e., disease transmission exacerbated by alternative hosts) and may have ramifications for plague dynamics in Asia and Africa, where a single main host has traditionally been considered to drive Yersinia ecology. Furthermore, abundance thresholds of alternate hosts may be a key phenomenon determining outbreaks of disease in many multihost-disease systems.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Declines in large wildlife increase landscape-level prevalence of rodent-borne disease in Africa

Hillary S. Young; Rodolfo Dirzo; Kristofer M. Helgen; Douglas J. McCauley; Sarah A. Billeter; Michael Y. Kosoy; Lynn M. Osikowicz; Daniel J. Salkeld; Truman P. Young; Katharina Dittmar

Significance Understanding the effects of biodiversity loss on zoonotic disease is of pressing importance to both conservation science and public health. This paper provides experimental evidence of increased landscape-level disease risk following declines in large wildlife, using the case study of the rodent-borne zoonosis, bartonellosis, in East Africa. This pattern is driven not by changes in community composition or diversity of hosts, as frequently proposed in other systems, but by increases in abundance of susceptible hosts following large mammal declines. Given that rodent increases following large wildlife declines appear to be a widespread pattern, we suggest this relationship is likely to be general. Populations of large wildlife are declining on local and global scales. The impacts of this pulse of size-selective defaunation include cascading changes to smaller animals, particularly rodents, and alteration of many ecosystem processes and services, potentially involving changes to prevalence and transmission of zoonotic disease. Understanding linkages between biodiversity loss and zoonotic disease is important for both public health and nature conservation programs, and has been a source of much recent scientific debate. In the case of rodent-borne zoonoses, there is strong conceptual support, but limited empirical evidence, for the hypothesis that defaunation, the loss of large wildlife, increases zoonotic disease risk by directly or indirectly releasing controls on rodent density. We tested this hypothesis by experimentally excluding large wildlife from a savanna ecosystem in East Africa, and examining changes in prevalence and abundance of Bartonella spp. infection in rodents and their flea vectors. We found no effect of wildlife removal on per capita prevalence of Bartonella infection in either rodents or fleas. However, because rodent and, consequently, flea abundance doubled following experimental defaunation, the density of infected hosts and infected fleas was roughly twofold higher in sites where large wildlife was absent. Thus, defaunation represents an elevated risk in Bartonella transmission to humans (bartonellosis). Our results (i) provide experimental evidence of large wildlife defaunation increasing landscape-level disease prevalence, (ii) highlight the importance of susceptible host regulation pathways and host/vector density responses in biodiversity–disease relationships, and (iii) suggest that rodent-borne disease responses to large wildlife loss may represent an important context where this relationship is largely negative.


Ecology | 2010

Community ecology and disease risk: lizards, squirrels, and the Lyme disease spirochete in California, USA

Daniel J. Salkeld; Robert S. Lane

Vector-borne zoonotic diseases are often maintained in complex transmission cycles involving multiple vertebrate hosts and their arthropod vectors. In the state of California, U.S.A., the spirochete Borrelia burgdorferi, which causes Lyme disease, is transmitted between vertebrate hosts by the western black-legged tick, Ixodes pacificus. Several mammalian species serve as reservoir hosts of the spirochete, but levels of tick infestation, reservoir competence, and Borrelia-infection prevalence vary widely among such hosts. Here, we model the host (lizards, Peromyscus mice, Californian meadow voles, dusky-footed wood rats, and western gray squirrels), vector, and pathogen community of oak woodlands in northwestern California to determine the relative importance of different tick hosts. Observed infection prevalence of B. burgdorferi in host-seeking I. pacificus nymphs was 1.8-5.3%, and our host-community model estimated an infection prevalence of 1.6-2.2%. The western gray squirrel (Sciurus griseus) was the only source of infected nymphs. Lizards, which are refractory to Borrelia infection, are important in feeding subadult ticks but reduce disease risk (nymphal infection prevalence). Species identity is therefore critical in understanding and determining the local disease ecology.


Journal of Animal Ecology | 2009

Evidence for the involvement of an alternate rodent host in the dynamics of introduced plague in prairie dogs

Paul Stapp; Daniel J. Salkeld; Heather A. Franklin; John P. Kraft; Daniel W. Tripp; Michael F. Antolin; Kenneth L. Gage

1. The introduction of plague to North America is a significant threat to colonies of prairie dogs (Cynomys ludovicianus), a species of conservation concern in the Great Plains. Other small rodents are exposed to the causative agent, Yersinia pestis, during or after epizootics; yet, its effect on these rodents is not known, and their role in transmitting and maintaining plague in the absence of prairie dogs remains unclear. 2. We live-trapped small rodents and collected their fleas on 11 colonies before, during and after plague epizootics in Colorado, USA, from 2004 to 2006. Molecular genetic (polymerase chain reaction) assays were used to identify Y. pestis in fleas. 3. Abundance of northern grasshopper mice (Onychomys leucogaster) was low on sites following epizootics in 2004, and declined markedly following plague onset on other colonies in 2005. These changes coincided with exposure of grasshopper mice to plague, and with periods when mice became infested with large numbers of prairie dog fleas (Oropsylla hirsuta), including some that were infected with Y. pestis. Additionally, several Pleochaetis exilis, fleas restricted to grasshopper mice and never found on prairie dogs on our site, were polymerase chain reaction-positive for Y. pestis, indicating that grasshopper mice can infect their own fleas. No changes in abundance of other rodent species could be attributed to plague, and no other rodents hosted O. hirsuta during epizootics, or harboured Y. pestis-infected fleas. 4. In spring 2004, grasshopper mice were most numerous in colonies that suffered plague the following year, and the pattern of colony extinctions over a 12-year period mirrored patterns of grasshopper mouse abundance in our study area, suggesting that colonies with high densities of grasshopper mice may be more susceptible to outbreaks. We speculate that grasshopper mice help spread Y. pestis during epizootics through their ability to survive infection, harbour prairie dog fleas and, during their wide-ranging movements, transport infected fleas among burrows, which functionally connects prairie dog coteries that would otherwise be socially distinct.


Journal of Vector Ecology | 2009

Transmission cycles of Borrelia burgdorferi and B. bissettii in relation to habitat type in northwestern California

Lars Eisen; Rebecca J. Eisen; Jeomhee Mun; Daniel J. Salkeld; Robert S. Lane

ABSTRACT: This study was undertaken to determine which rodent species serve as primary reservoirs for the Lyme disease spirochete Borrelia burgdorferi in commonly occurring woodland types in inland areas of northwestern California, and to examine whether chaparral or grassland serve as source habitats for dispersal of B. burgdorferi- or B. bissettii-infected rodents into adjacent woodlands. The western gray squirrel (Sciurus griseus) was commonly infected with B. burgdorferi in oak woodlands, whereas examination of 30 dusky-footed woodrats (Neotoma fuscipes) and 280 Peromyscus spp. mice from 13 widely-spaced Mendocino County woodlands during 2002 and 2003 yielded only one infected woodrat and one infected deer mouse (P. maniculatus). These data suggest that western gray squirrels account for the majority of production by rodents of fed Ixodes pacificus larvae infected with B. burgdorferi in the woodlands sampled. Infections with B. burgdorferi also were rare in woodrats (0/47, 0/3) and mice (3/66, 1/6) captured in chaparral and grassland, respectively, and therefore these habitats are unlikely sources for dispersal of this spirochete into adjacent woodlands. On the other hand, B. bissettii was commonly detected in both woodrats (22/47) and mice (15/66) in chaparral. We conclude that the data from this and previous studies in northwestern California are suggestive of a pattern where inland oak-woodland habitats harbor a B. burgdorferi transmission cycle driven primarily by I. pacificus and western gray squirrels, whereas chaparral habitats contain a B. bissettii transmission cycle perpetuated largely by I. spinipalpis, woodrats, and Peromyscus mice. The dominant role of western gray squirrels as reservoirs of B. burgdorferi in certain woodlands offers intriguing opportunities for preventing Lyme disease by targeting these animals by means of either host-targeted acaricides or oral vaccination against B. burgdorferi.


Journal of Parasitology | 2008

Prevalence and Abundance of Fleas in black-tailed Prairie Dog Burrows: Implications for the Transmission of Plague (Yersinia pestis)

Daniel J. Salkeld; Paul Stapp

Plague, the disease caused by the bacterium Yersinia pestis, can have devastating impacts on North American wildlife. Epizootics, or die-offs, in prairie dogs (Cynomys ludovicianus) occur sporadically and fleas (Siphonaptera) are probably important in the diseases transmission and possibly as maintenance hosts of Y. pestis between epizootics. We monitored changes in flea abundance in prairie dog burrows in response to precipitation, temperature, and plague activity in shortgrass steppe in northern Colorado. Oropsylla hirsuta was the most commonly found flea, and it increased in abundance with temperature. In contrast, Oropsylla tuberculata cynomuris declined with rising temperature. During plague epizootics, flea abundance in burrows increased and then subsequently declined after the extirpation of their prairie dog hosts.


Emerging Infectious Diseases | 2014

Tick-borne Pathogens in Northwestern California, USA

Daniel J. Salkeld; Stephanie S. Cinkovich; Nathan C. Nieto

To the Editor: In northwestern California, USA, the western black-legged tick, Ixodes pacificus, is a known vector of Borrelia burgdorferi, the spirochete that causes Lyme disease. B. miyamotoi, which is more closely related to spirochetes that cause relapsing fever, has also been detected in 2 locations in California (1,2) and has recently been implicated as a human pathogen in the northeastern United States (3,4). Other studies may have unintentionally included B. miyamotoi infections among measures of B. burgdorferi if the diagnostics were for spirochetes (e.g., direct fluorescent antibody tests or dark-field microscopy) or genetically targeted for Borrelia spp. (5). To investigate Borrelia spp. ecology in California, we collected adult I. pacificus ticks by dragging a 1-m2 white flannel blanket along vegetation and/or leaf litter in 12 recreational areas in the San Francisco Bay area during January–May 2012 (Table). Habitat varied from chaparral and grassland to coastal live oak woodland. Ticks were pooled for examination by quantitative PCR (qPCR) for the presence of Borrelia spp. We interpreted the prevalence of Borrelia spp. from positive pools as the minimum infection prevalence (i.e., assuming 1 positive tick/positive pool). DNA was extracted from ticks by using the DNeasy Blood and Tissue Kit (QIAGEN, Valencia, CA, USA) according to the manufacturer’s protocols and then stored at −20°C until use. DNA was analyzed by qPCR, with use of primer and fluorescent hybridization probes previously developed to differentiate Borrelia spp. spirochetes (5). To identify the Borrelia spp. genotype, we attempted to sequence the 16S–23S (rrs-rrlA) intergenic spacer of each sample positive by qPCR (8). The nested PCR product was further purified by using the QIAquick Kit (QIAGEN) and then sequenced (Environmental Genetics and Genomics Laboratory, Northern Arizona University, Flagstaff, AZ, USA; www.enggen.nau.edu/dna.html) by using capillary Sanger sequencing on an ABI 3730 sequencer (Life Technologies, Grand Island, NY, USA). BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to compare each sequence to other Borrelia spp. sequences available from GenBank. Table Borrelia spp. infection prevalence among adult Ixodes pacificus ticks in northwestern California, USA, January–May 2012* From a total of 1,180 adult ticks, we found 43 samples positive for Borrelia spp., resulting in a minimum infection prevalence of 3.6% (Table). We obtained intergenic spacer sequence data for 27 of the positive samples; 6 samples were B. burgdorferi sensu stricto, 7 were B. burgdorferi sensu lato (both on the basis of alignments of 816 bp), and 14 were B. miyamotoi (on the basis of alignments of 503 bp). The B. miyamotoi sequences for our samples from California and those for isolates from the eastern United States (9) and Japan (8) formed a monophyletic clade that was oriented as a sister clade to the 3 Borrelia spp. that cause tick-borne relapsing fever in the United States (B. hermsii, B. turicatae, and B. parkeri). We found borreliae-infected adult I. pacificus ticks at all 12 sites from which tick sample sizes exceeded 30. When the presence of B. burgdorferi sensu stricto or B. burgdorferi sensu lato was detected (4/12 sites each), prevalence was 0.6%–2.2% and 0.7%–2.5%, respectively. B. miyamotoi was detected at 7/12 sites, and prevalence ranged from 0.7% to 7.5%. A previous survey of B. burgdorferi in nearby Santa Cruz County recreational areas reported an infection prevalence of ≈6% among adult I. pacificus ticks (6); the study did not, however, differentiate between Borrelia spp. and therefore may have included B. miyamotoi among its prevalence measures (5). In our study, B. burgdorferi was found more frequently in woodland habitats, but it was also detected in a grassland–chaparral habitat several hundred meters from the nearest woodland. We did not detect B. bissettii, a species recently implicated as a human pathogen in Mendocino County, California (10). The high level of habitat variation in northwestern California presents a varied risk for Borrelia-associated tick-borne disease in humans because of diverse variations in vertebrate reservoir ecology, tick abundance, and human exposure to ticks. This variation emphasizes the need to understand the local epidemiology and ecology of a disease. In adult I. pacificus ticks in the San Francisco Bay area, B. miyamotoi is as abundant as its congener B. burgdorferi. Human disease caused by B. miyamotoi infection has not been reported in California, and transmission efficiency of B. miyamotoi by I. pacificus ticks is unknown. However, it is possible that B. miyamotoi infections in ticks and humans have not been accurately diagnosed. We advocate for increased scrutiny of the eco-epidemiology of B. miyamotoi in human, tick, and possible vertebrate host populations in northwestern California.


Journal of Wildlife Diseases | 2007

THE POTENTIAL ROLE OF SWIFT FOXES (VULPES VELOX) AND THEIR FLEAS IN PLAGUE OUTBREAKS IN PRAIRIE DOGS

Daniel J. Salkeld; Rebecca J. Eisen; Paul Stapp; Aryn P. Wilder; Jennifer L. Lowell; Daniel W. Tripp; Doug Albertson; Michael F. Antolin

Swift foxes (Vulpes velox) have been proposed as potential carriers of fleas infected with the bacterium Yersinia pestis between areas of epizootics in black-tailed prairie dogs (Cynomys ludovicianus). We examined antibody prevalence rates of a population of swift foxes in Colorado, USA, and used polymerase chain reaction (PCR) assays to examine their flea biota for evidence of Y. pestis. Fifteen of 61 (24%) captured foxes were seropositive, and antibody prevalence was spatially correlated with epizootic plague activity in prairie dog colonies in the year of, and previous to, the study. Foxes commonly harbored the flea Pulex simulans, though none of the fleas was positive for Y. pestis.


Journal of Wildlife Diseases | 2008

Exposure of Small Rodents to Plague during Epizootics in Black-tailed Prairie Dogs

Paul Stapp; Daniel J. Salkeld; Rebecca J. Eisen; Ryan Pappert; John Young; Leon G. Carter; Kenneth L. Gage; Daniel W. Tripp; Michael F. Antolin

Plague, caused by the bacterium Yersinia pestis, causes die-offs of colonies of prairie dogs (Cynomys ludovicianus). It has been argued that other small rodents are reservoirs for plague, spreading disease during epizootics and maintaining the pathogen in the absence of prairie dogs; yet there is little empirical support for distinct enzootic and epizootic cycles. Between 2004 and 2006, we collected blood from small rodents captured in colonies in northern Colorado before, during, and for up to 2 yr after prairie dog epizootics. We screened 1,603 blood samples for antibodies to Y. pestis, using passive hemagglutination and inhibition tests, and for a subset of samples we cultured blood for the bacterium itself. Of the four species of rodents that were common in colonies, the northern grasshopper mouse (Onychomys leucogaster) was the only species with consistent evidence of plague infection during epizootics, with 11.1–23.1% of mice seropositive for antibody to Y. pestis during these events. Seropositive grasshopper mice, thirteen-lined ground squirrels (Spermophilus tridecemlineatus), and deer mice (Peromyscus maniculatus) were captured the year following epizootics. The appearance of antibodies to Y. pestis in grasshopper mice coincided with periods of high prairie dog mortality; subsequently, antibody prevalence rates declined, with no seropositive individuals captured 2 yr after epizootics. We did not detect plague in any rodents off of colonies, or on colonies prior to epizootics, and found no evidence of persistent Y. pestis infection in blood cultures. Our results suggest that grasshopper mice could be involved in epizootic spread of Y. pestis, and possibly, serve as a short-term reservoir for plague, but provide no evidence that the grasshopper mouse or any small rodent acts as a long-term, enzootic host for Y. pestis in prairie dog colonies.

Collaboration


Dive into the Daniel J. Salkeld's collaboration.

Top Co-Authors

Avatar

Paul Stapp

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel W. Tripp

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Kerry A. Padgett

California Department of Public Health

View shared research outputs
Top Co-Authors

Avatar

Rebecca J. Eisen

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Robert S. Lane

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge