Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J. Sanchez is active.

Publication


Featured researches published by Daniel J. Sanchez.


Psychonomic Bulletin & Review | 2010

Performing the unexplainable: Implicit task performance reveals individually reliable sequence learning without explicit knowledge

Daniel J. Sanchez; Eric W. Gobel; Paul J. Reber

Memory-impaired patients express intact implicit perceptual-motor sequence learning, but it has been difficult to obtain a similarly clear dissociation in healthy participants. When explicit memory is intact, participants acquire some explicit knowledge and performance improvements from implicit learning may be subtle. Therefore, it is difficult to determine whether performance exceeds what could be expected on the basis of the concomitant explicit knowledge. Using a challenging new sequence-learning task, robust implicit learning was found in healthy participants with virtually no associated explicit knowledge. Participants trained on a repeating sequence that was selected randomly from a set of five. On a performance test of all five sequences, performance was best on the trained sequence, and two-thirds of the participants exhibited individually reliable improvement (by chi-square analysis). Participants could not reliably indicate which sequence had been trained by either recognition or recall. Only by expressing their knowledge via performance were participants able to indicate which sequence they had learned.


Journal of Experimental Psychology: Learning, Memory and Cognition | 2011

Integration of Temporal and Ordinal Information During Serial Interception Sequence Learning

Eric W. Gobel; Daniel J. Sanchez; Paul J. Reber

The expression of expert motor skills typically involves learning to perform a precisely timed sequence of movements. Research examining incidental sequence learning has relied on a perceptually cued task that gives participants exposure to repeating motor sequences but does not require timing of responses for accuracy. In the 1st experiment, a novel perceptual-motor sequence learning task was used, and learning a precisely timed cued sequence of motor actions was shown to occur without explicit instruction. Participants learned a repeating sequence through practice and showed sequence-specific knowledge via a performance decrement when switched to an unfamiliar sequence. In the 2nd experiment, the integration of representation of action order and timing sequence knowledge was examined. When either action order or timing sequence information was selectively disrupted, performance was reduced to levels similar to completely novel sequences. Unlike prior sequence-learning research that has found timing information to be secondary to learning action sequences, when the task demands require accurate action and timing information, an integrated representation of these types of information is acquired. These results provide the first evidence for incidental learning of fully integrated action and timing sequence information in the absence of an independent representation of action order and suggest that this integrative mechanism may play a material role in the acquisition of complex motor skills.


Journal of Experimental Psychology: Human Perception and Performance | 2012

Operating Characteristics of the Implicit Learning System Supporting Serial Interception Sequence Learning

Daniel J. Sanchez; Paul J. Reber

The memory system that supports implicit perceptual-motor sequence learning relies on brain regions that operate separately from the explicit, medial temporal lobe memory system. The implicit learning system therefore likely has distinct operating characteristics and information processing constraints. To attempt to identify the limits of the implicit sequence learning mechanism, participants performed the serial interception sequence learning (SISL) task with covertly embedded repeating sequences that were much longer than most previous studies: ranging from 30 to 60 (Experiment 1) and 60 to 90 (Experiment 2) items in length. Robust sequence-specific learning was observed for sequences up to 80 items in length, extending the known capacity of implicit sequence learning. In Experiment 3, 12-item repeating sequences were embedded among increasing amounts of irrelevant nonrepeating sequences (from 20 to 80% of training trials). Despite high levels of irrelevant trials, learning occurred across conditions. A comparison of learning rates across all three experiments found a surprising degree of constancy in the rate of learning regardless of sequence length or embedded noise. Sequence learning appears to be constant with the logarithm of the number of sequence repetitions practiced during training. The consistency in learning rate across experiments and conditions implies that the mechanisms supporting implicit sequence learning are not capacity-constrained by very long sequences nor adversely affected by high rates of irrelevant sequences during training.


Psychological Research-psychologische Forschung | 2015

Quantifying transfer after perceptual-motor sequence learning: how inflexible is implicit learning?

Daniel J. Sanchez; Eric N. Yarnik; Paul J. Reber

Studies of implicit perceptual-motor sequence learning have often shown learning to be inflexibly tied to the training conditions during learning. Since sequence learning is seen as a model task of skill acquisition, limits on the ability to transfer knowledge from the training context to a performance context indicates important constraints on skill learning approaches. Lack of transfer across contexts has been demonstrated by showing that when task elements are changed following training, this leads to a disruption in performance. These results have typically been taken as suggesting that the sequence knowledge relies on integrated representations across task elements (Abrahamse, Jiménez, Verwey, & Clegg, Psychon Bull Rev 17:603–623, 2010a). Using a relatively new sequence learning task, serial interception sequence learning, three experiments are reported that quantify this magnitude of performance disruption after selectively manipulating individual aspects of motor performance or perceptual information. In Experiment 1, selective disruption of the timing or order of sequential actions was examined using a novel response manipulandum that allowed for separate analysis of these two motor response components. In Experiments 2 and 3, transfer was examined after selective disruption of perceptual information that left the motor response sequence intact. All three experiments provided quantifiable estimates of partial transfer to novel contexts that suggest some level of information integration across task elements. However, the ability to identify quantifiable levels of successful transfer indicates that integration is not all-or-none and that measurement sensitivity is a key in understanding sequence knowledge representations.


Communications of The ACM | 2014

Neuroscience meets cryptography: crypto primitives secure against rubber hose attacks

Hristo Bojinov; Daniel J. Sanchez; Paul J. Reber; Dan Boneh; Patrick Lincoln

Cryptographic systems often rely on the secrecy of cryptographic keys given to users. Many schemes, however, cannot resist coercion attacks where the user is forcibly asked by an attacker to reveal the key. These attacks, known as rubber hose cryptanalysis, are often the easiest way to defeat cryptography. We present a defense against coercion attacks using the concept of implicit learning from cognitive psychology. Implicit learning refers to learning of patterns without any conscious knowledge of the learned pattern. We use a carefully crafted computer game to allow a user to implicitly learn a secret password without them having any explicit or conscious knowledge of the trained password. While the trained secret can be used for authentication, participants cannot be coerced into revealing it since they have no conscious knowledge of it. We performed a number of user studies using Amazons Mechanical Turk to verify that participants can successfully re-authenticate over time and that they are unable to reconstruct or even robustly recognize the trained secret.


PLOS ONE | 2014

Ego depletion impairs implicit learning.

Kelsey R. Thompson; Daniel J. Sanchez; Abigail H. Wesley; Paul J. Reber

Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.


usenix security symposium | 2012

Neuroscience meets cryptography: designing crypto primitives secure against rubber hose attacks

Hristo Bojinov; Daniel J. Sanchez; Paul J. Reber; Dan Boneh; Patrick Lincoln


Cognition | 2013

Explicit pre-training instruction does not improve implicit perceptual-motor sequence learning

Daniel J. Sanchez; Paul J. Reber


national conference on artificial intelligence | 2016

A Prototype Intelligent Assistant to Help Dysphagia Patients Eat Safely At Home.

Michael Freed; Brian Burns; Aaron Heller; Daniel J. Sanchez; Sharon Beaumont-Bowman


international joint conference on artificial intelligence | 2016

A virtual assistant to help dysphagia patients eat safely at home

Michael Freed; Brian Burns; Aaron Heller; Daniel J. Sanchez; Sharon Beaumont-Bowman

Collaboration


Dive into the Daniel J. Sanchez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge