Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J. Vis is active.

Publication


Featured researches published by Daniel J. Vis.


Cell | 2016

A Landscape of Pharmacogenomic Interactions in Cancer

Francesco Iorio; Theo Knijnenburg; Daniel J. Vis; Graham R. Bignell; Michael P. Menden; Michael Schubert; Nanne Aben; Emanuel Gonçalves; Syd Barthorpe; Howard Lightfoot; Thomas Cokelaer; Patricia Greninger; Ewald van Dyk; Han Chang; Heshani de Silva; Holger Heyn; Xianming Deng; Regina K. Egan; Qingsong Liu; Tatiana Mironenko; Xeni Mitropoulos; Laura Richardson; Jinhua Wang; Tinghu Zhang; Sebastian Moran; Sergi Sayols; Maryam Soleimani; David Tamborero; Nuria Lopez-Bigas; Petra Ross-Macdonald

Summary Systematic studies of cancer genomes have provided unprecedented insights into the molecular nature of cancer. Using this information to guide the development and application of therapies in the clinic is challenging. Here, we report how cancer-driven alterations identified in 11,289 tumors from 29 tissues (integrating somatic mutations, copy number alterations, DNA methylation, and gene expression) can be mapped onto 1,001 molecularly annotated human cancer cell lines and correlated with sensitivity to 265 drugs. We find that cell lines faithfully recapitulate oncogenic alterations identified in tumors, find that many of these associate with drug sensitivity/resistance, and highlight the importance of tissue lineage in mediating drug response. Logic-based modeling uncovers combinations of alterations that sensitize to drugs, while machine learning demonstrates the relative importance of different data types in predicting drug response. Our analysis and datasets are rich resources to link genotypes with cellular phenotypes and to identify therapeutic options for selected cancer sub-populations.


The EMBO Journal | 2015

Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt‐based anti‐cancer drugs

Rosa Planells-Cases; Darius Lutter; Charlotte Guyader; Nora Merete Gerhards; Florian Ullrich; Deborah A Elger; Aslı Küçükosmanoğlu; Guotai Xu; Felizia K. Voss; S. Momsen Reincke; Tobias Stauber; Vincent A. Blomen; Daniel J. Vis; Lodewyk F. A. Wessels; Thijn R. Brummelkamp; Piet Borst; Sven Rottenberg; Thomas J. Jentsch

Although platinum‐based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume‐regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E. Cell swelling strongly enhanced LRRC8‐dependent cisplatin uptake, bolstering the notion that cisplatin enters cells through VRAC. LRRC8A disruption also suppressed drug‐induced apoptosis independently from drug uptake, possibly by impairing VRAC‐dependent apoptotic cell volume decrease. Hence, by mediating cisplatin uptake and facilitating apoptosis, VRAC plays a dual role in the cellular drug response. Incorporation of the LRRC8D subunit into VRAC substantially increased its permeability for cisplatin and the cellular osmolyte taurine, indicating that LRRC8 proteins form the channel pore. Our work suggests that LRRC8D‐containing VRACs are crucial for cell volume regulation by an important organic osmolyte and may influence cisplatin/carboplatin responsiveness of tumors.


Embo Molecular Medicine | 2015

Intra‐ and inter‐tumor heterogeneity in a vemurafenib‐resistant melanoma patient and derived xenografts

Kristel Kemper; Oscar Krijgsman; Paulien Cornelissen-Steijger; Aida Shahrabi; Fleur Weeber; Ji-Ying Song; Thomas Kuilman; Daniel J. Vis; Lodewyk F. A. Wessels; Emile E. Voest; Ton N. M. Schumacher; Christian U. Blank; David J. Adams; John B. A. G. Haanen; Daniel S. Peeper

The development of targeted inhibitors, like vemurafenib, has greatly improved the clinical outcome of BRAFV600E metastatic melanoma. However, resistance to such compounds represents a formidable problem. Using whole‐exome sequencing and functional analyses, we have investigated the nature and pleiotropy of vemurafenib resistance in a melanoma patient carrying multiple drug‐resistant metastases. Resistance was caused by a plethora of mechanisms, all of which reactivated the MAPK pathway. In addition to three independent amplifications and an aberrant form of BRAFV600E, we identified a new activating insertion in MEK1. This MEK1T55delinsRT mutation could be traced back to a fraction of the pre‐treatment lesion and not only provided protection against vemurafenib but also promoted local invasion of transplanted melanomas. Analysis of patient‐derived xenografts (PDX) from therapy‐refractory metastases revealed that multiple resistance mechanisms were present within one metastasis. This heterogeneity, both inter‐ and intra‐tumorally, caused an incomplete capture in the PDX of the resistance mechanisms observed in the patient. In conclusion, vemurafenib resistance in a single patient can be established through distinct events, which may be preexisting. Furthermore, our results indicate that PDX may not harbor the full genetic heterogeneity seen in the patients melanoma.


Scientific Reports | 2016

Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer

Magali Michaut; Suet-Feung Chin; Ian Majewski; Tesa Severson; Tycho Bismeijer; Leanne De Koning; Justine Peeters; Philip C. Schouten; Oscar M. Rueda; Astrid Bosma; Finbarr Tarrant; Yue Fan; Beilei He; Zheng Xue; Lorenza Mittempergher; Roelof Jc Kluin; Jeroen Heijmans; Mireille Snel; Bernard Pereira; Andreas Schlicker; Elena Provenzano; Hamid Raza Ali; Alexander Gaber; Gillian O’Hurley; Sophie Lehn; Jettie J. Muris; Jelle Wesseling; Elaine Kay; Stephen John Sammut; Helen Bardwell

Invasive lobular carcinoma (ILC) is the second most frequently occurring histological breast cancer subtype after invasive ductal carcinoma (IDC), accounting for around 10% of all breast cancers. The molecular processes that drive the development of ILC are still largely unknown. We have performed a comprehensive genomic, transcriptomic and proteomic analysis of a large ILC patient cohort and present here an integrated molecular portrait of ILC. Mutations in CDH1 and in the PI3K pathway are the most frequent molecular alterations in ILC. We identified two main subtypes of ILCs: (i) an immune related subtype with mRNA up-regulation of PD-L1, PD-1 and CTLA-4 and greater sensitivity to DNA-damaging agents in representative cell line models; (ii) a hormone related subtype, associated with Epithelial to Mesenchymal Transition (EMT), and gain of chromosomes 1q and 8q and loss of chromosome 11q. Using the somatic mutation rate and eIF4B protein level, we identified three groups with different clinical outcomes, including a group with extremely good prognosis. We provide a comprehensive overview of the molecular alterations driving ILC and have explored links with therapy response. This molecular characterization may help to tailor treatment of ILC through the application of specific targeted, chemo- and/or immune-therapies.


Nature Medicine | 2016

Facilitating a culture of responsible and effective sharing of cancer genome data.

Lillian L. Siu; Mark Lawler; David Haussler; Bartha Maria Knoppers; Jeremy Lewin; Daniel J. Vis; Rachel G Liao; Fabrice Andre; Ian Banks; J. Carl Barrett; Carlos Caldas; Anamaria Aranha Camargo; Rebecca C. Fitzgerald; Mao Mao; John Mattison; William Pao; William R. Sellers; Patrick F. Sullivan; Bin Tean Teh; Robyn L. Ward; Jean C. Zenklusen; Charles L. Sawyers; Emile E. Voest

Rapid and affordable tumor molecular profiling has led to an explosion of clinical and genomic data poised to enhance the diagnosis, prognostication and treatment of cancer. A critical point has now been reached at which the analysis and storage of annotated clinical and genomic information in unconnected silos will stall the advancement of precision cancer care. Information systems must be harmonized to overcome the multiple technical and logistical barriers to data sharing. Against this backdrop, the Global Alliance for Genomic Health (GA4GH) was established in 2013 to create a common framework that enables responsible, voluntary and secure sharing of clinical and genomic data. This Perspective from the GA4GH Clinical Working Group Cancer Task Team highlights the data-aggregation challenges faced by the field, suggests potential collaborative solutions and describes how GA4GH can catalyze a harmonized data-sharing culture.


Pharmacogenomics | 2016

Multilevel models improve precision and speed of IC50 estimates

Daniel J. Vis; Lorenzo Bombardelli; Howard Lightfoot; Francesco Iorio; Mathew J. Garnett; Lodewyk F. A. Wessels

AIM Experimental variation in dose-response data of drugs tested on cell lines result in inaccuracies in the estimate of a key drug sensitivity characteristic: the IC50. We aim to improve the precision of the half-limiting dose (IC50) estimates by simultaneously employing all dose-responses across all cell lines and drugs, rather than using a single drug-cell line response. MATERIALS & METHODS We propose a multilevel mixed effects model that takes advantage of all available dose-response data. RESULTS The new estimates are highly concordant with the currently used Bayesian model when the data are well behaved. Otherwise, the multilevel model is clearly superior. CONCLUSION The multilevel model yields a significant reduction of extreme IC50 estimates, an increase in precision and it runs orders of magnitude faster.


Bioinformatics | 2016

TANDEM: a two-stage approach to maximize interpretability of drug response models based on multiple molecular data types

Nanne Aben; Daniel J. Vis; Magali Michaut; Lodewyk F. A. Wessels

MOTIVATION Clinical response to anti-cancer drugs varies between patients. A large portion of this variation can be explained by differences in molecular features, such as mutation status, copy number alterations, methylation and gene expression profiles. We show that the classic approach for combining these molecular features (Elastic Net regression on all molecular features simultaneously) results in models that are almost exclusively based on gene expression. The gene expression features selected by the classic approach are difficult to interpret as they often represent poorly studied combinations of genes, activated by aberrations in upstream signaling pathways. RESULTS To utilize all data types in a more balanced way, we developed TANDEM, a two-stage approach in which the first stage explains response using upstream features (mutations, copy number, methylation and cancer type) and the second stage explains the remainder using downstream features (gene expression). Applying TANDEM to 934 cell lines profiled across 265 drugs (GDSC1000), we show that the resulting models are more interpretable, while retaining the same predictive performance as the classic approach. Using the more balanced contributions per data type as determined with TANDEM, we find that response to MAPK pathway inhibitors is largely predicted by mutation data, while predicting response to DNA damaging agents requires gene expression data, in particular SLFN11 expression. AVAILABILITY AND IMPLEMENTATION TANDEM is available as an R package on CRAN (for more information, see http://ccb.nki.nl/software/tandem). CONTACT [email protected] or [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Annals of Oncology | 2017

Towards a global cancer knowledge network: dissecting the current international cancer genomic sequencing landscape

Daniel J. Vis; Jeremy Lewin; Rachel G. Liao; M Mao; F. Andre; Robyn L. Ward; Fabien Calvo; Bin Tean Teh; A A Camargo; Bartha Maria Knoppers; Charles L. Sawyers; L F A Wessels; Mark Lawler; Lillian L. Siu; Emile E. Voest

Background While next generation sequencing has enhanced our understanding of the biological basis of malignancy, current knowledge on global practices for sequencing cancer samples is limited. To address this deficiency, we developed a survey to provide a snapshot of current sequencing activities globally, identify barriers to data sharing and use this information to develop sustainable solutions for the cancer research community. Methods A multi-item survey was conducted assessing demographics, clinical data collection, genomic platforms, privacy/ethics concerns, funding sources and data sharing barriers for sequencing initiatives globally. Additionally, respondents were asked as to provide the primary intent of their initiative (clinical diagnostic, research or combination). Results Of 107 initiatives invited to participate, 59 responded (response rate = 55%). Whole exome sequencing (P = 0.03) and whole genome sequencing (P = 0.01) were utilized less frequently in clinical diagnostic than in research initiatives. Procedures to identify cancer-specific variants were heterogeneous, with bioinformatics pipelines employing different mutation calling/variant annotation algorithms. Measurement of treatment efficacy varied amongst initiatives, with time on treatment (57%) and RECIST (53%) being the most common; however, other parameters were also employed. Whilst 72% of initiatives indicated data sharing, its scope varied, with a number of restrictions in place (e.g. transfer of raw data). The largest perceived barriers to data harmonization were the lack of financial support (P < 0.01) and bioinformatics concerns (e.g. lack of interoperability) (P = 0.02). Capturing clinical data was more likely to be perceived as a barrier to data sharing by larger initiatives than by smaller initiatives (P = 0.01). Conclusions These results identify the main barriers, as perceived by the cancer sequencing community, to effective sharing of cancer genomic and clinical data. They highlight the need for greater harmonization of technical, ethical and data capture processes in cancer sample sequencing worldwide, in order to support effective and responsible data sharing for the benefit of patients.Background While next generation sequencing has enhanced our understanding of the biological basis of malignancy, current knowledge on global practices for sequencing cancer samples is limited. To address this deficiency, we developed a survey to provide a snapshot of current sequencing activities globally, identify barriers to data sharing and use this information to develop sustainable solutions for the cancer research community. Methods A multi-item survey was conducted assessing demographics, clinical data collection, genomic platforms, privacy/ethics concerns, funding sources and data sharing barriers for sequencing initiatives globally. Additionally, respondents were asked as to provide the primary intent of their initiative (Clinical Diagnostic, Research or Combination). Results Of 107 initiatives invited to participate, 59 responded (response rate=55%). Whole Exome Sequencing ( p =0.03) and Whole Genome Sequencing ( p =  0.01), were utilized less frequently in Clinical Diagnostic than in Research initiatives. Procedures to identify cancer-specific variants were heterogeneous, with bioinformatics pipelines employing different mutation calling/variant annotation algorithms. Measurement of treatment efficacy varied amongst initiatives, with time on treatment (57%) and RECIST (53%) being the most common however; other parameters were also employed. Whilst 72% of initiatives indicated data sharing, its scope varied, with a number of restrictions in place (e.g. transfer of raw data). The largest perceived barriers to data harmonisation were the lack of financial support ( p <  0.01) and bioinformatics concerns (e.g. lack of interoperability)( p =  0.02). Capturing clinical data was more likely to be perceived as a barrier to data sharing by larger initiatives than by smaller initiatives ( p =  0.01). Conclusions These results identify the main barriers, as perceived by the cancer sequencing community, to effective sharing of cancer genomic and clinical data. They highlight the need for greater harmonisation of technical, ethical and data capture processes in cancer sample sequencing worldwide, in order to support effective and responsible data sharing for the benefit of patients.


Cancer Cell | 2018

Selective Loss of PARG Restores PARylation and Counteracts PARP Inhibitor-Mediated Synthetic Lethality

Ewa Gogola; Alexandra A. Duarte; Julian R. de Ruiter; Wouter W. Wiegant; Jonas A. Schmid; Roebi de Bruijn; Dominic I. James; Sergi Guerrero Llobet; Daniel J. Vis; Stefano Annunziato; Bram van den Broek; Marco Barazas; Ariena Kersbergen; Marieke van de Ven; Madalena Tarsounas; Donald J. Ogilvie; Marcel A. T. M. van Vugt; Lodewyk F. A. Wessels; Jirina Bartkova; Irina Gromova; Miguel Andújar-Sánchez; Jiri Bartek; Massimo Lopes; Haico van Attikum; Piet Borst; Jos Jonkers; Sven Rottenberg

Inhibitors of poly(ADP-ribose) (PAR) polymerase (PARPi) have recently entered the clinic for the treatment of homologous recombination (HR)-deficient cancers. Despite the success of this approach, drug resistance is a clinical hurdle, and we poorly understand how cancer cells escape the deadly effects of PARPi without restoring the HR pathway. By combining genetic screens with multi-omics analysis of matched PARPi-sensitive and -resistant Brca2-mutated mouse mammary tumors, we identified loss of PAR glycohydrolase (PARG) as a major resistance mechanism. We also found the presence of PARG-negative clones in a subset of human serous ovarian and triple-negative breast cancers. PARG depletion restores PAR formation and partially rescues PARP1 signaling. Importantly, PARG inactivation exposes vulnerabilities that can be exploited therapeutically.


bioRxiv | 2018

Identifying biomarkers of anti-cancer drug synergy using multi-task learning

Nanne Aben; Julian R. de Ruiter; Evert Bosdriesz; Yongsoo Kim; Gergana Bounova; Daniel J. Vis; Lodewyk F. A. Wessels; Magali Michaut

Combining anti-cancer drugs has the potential to increase treatment efficacy. Because patient responses to drug combinations are highly variable, predictive biomarkers of synergy are required to identify which patients are likely to benefit from a drug combination. To aid biomarker identification, the DREAM challenge consortium has recently released data from a screen containing 85 cell lines and 167 drug combinations. The main challenge of these data is the low sample size: per drug combination, a median of 14 cell lines have been screened. We found that widely used methods in single drug response prediction, such as Elastic Net regression per drug, are not predictive in this setting. Instead, we propose to use multi-task learning: training a single model simultaneously on all drug combinations, which we show results in increased predictive performance. In contrast to other multi-task learning approaches, our approach allows for the identification of biomarkers, by using a modified random forest variable importance score, which we illustrate using artificial data and the DREAM challenge data. Notably, we find that mutations in MYO15A are associated with synergy between ALK / IGFR dual inhibitors and PI3K pathway inhibitors in triple-negative breast cancer. Author summary Combining drugs is a promising strategy for cancer treatment. However, it is often not known which patients will benefit from a particular drug combination. To identify patients that are likely to benefit, we need to identify biomarkers, such as mutations in the tumor’s DNA, that are associated with favorable response to the drug combination. In this work, we identified such biomarkers using the drug combination data released by the DREAM challenge consortium, which contain 85 tumor cell lines and 167 drug combinations. The main challenge of these data is the extremely low sample size: a median of 14 cell lines have been screened per drug combination. We found that traditional methods to identify biomarkers for monotherapy response, which analyze each drug separately, are not suitable in this low sample size setting. Instead, we used a technique called multi-task learning to jointly analyze all drug combinations in a single statistical model. In contrast to existing multi-task learning algorithms, which are black-box methods, our method allows for the identification of biomarkers. Notably, we find that, in a subset of breast cancer cell lines, MYO15A mutations associate with response to the combination of ALK / IGFR dual inhibitors and PI3K pathway inhibitors.

Collaboration


Dive into the Daniel J. Vis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emile E. Voest

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Jeremy Lewin

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Mark Lawler

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Charles L. Sawyers

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lillian L. Siu

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Magali Michaut

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Nanne Aben

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piet Borst

Netherlands Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge