Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J. Weiss is active.

Publication


Featured researches published by Daniel J. Weiss.


eLife | 2014

Mapping the zoonotic niche of Ebola virus disease in Africa

David M Pigott; Nick Golding; Adrian Mylne; Zhi Huang; Andrew J Henry; Daniel J. Weiss; Oliver J. Brady; Moritz U. G. Kraemer; David L. Smith; Catherine L. Moyes; Samir Bhatt; Peter W. Gething; Peter Horby; Isaac I. Bogoch; John S. Brownstein; Sumiko R. Mekaru; Andrew J. Tatem; Kamran Khan; Simon I. Hay

Ebola virus disease (EVD) is a complex zoonosis that is highly virulent in humans. The largest recorded outbreak of EVD is ongoing in West Africa, outside of its previously reported and predicted niche. We assembled location data on all recorded zoonotic transmission to humans and Ebola virus infection in bats and primates (1976–2014). Using species distribution models, these occurrence data were paired with environmental covariates to predict a zoonotic transmission niche covering 22 countries across Central and West Africa. Vegetation, elevation, temperature, evapotranspiration, and suspected reservoir bat distributions define this relationship. At-risk areas are inhabited by 22 million people; however, the rarity of human outbreaks emphasises the very low probability of transmission to humans. Increasing population sizes and international connectivity by air since the first detection of EVD in 1976 suggest that the dynamics of human-to-human secondary transmission in contemporary outbreaks will be very different to those of the past. DOI: http://dx.doi.org/10.7554/eLife.04395.001


eLife | 2016

Mapping global environmental suitability for Zika virus

Jane P. Messina; Moritz U. G. Kraemer; Oliver J. Brady; David M Pigott; Freya M Shearer; Daniel J. Weiss; Nick Golding; Corrine W. Ruktanonchai; Peter W. Gething; Emily Cohn; John S. Brownstein; Kamran Khan; Andrew J. Tatem; Thomas Jaenisch; Christopher J L Murray; Fatima Marinho; Thomas W. Scott; Simon I. Hay

Zika virus was discovered in Uganda in 1947 and is transmitted by Aedes mosquitoes, which also act as vectors for dengue and chikungunya viruses throughout much of the tropical world. In 2007, an outbreak in the Federated States of Micronesia sparked public health concern. In 2013, the virus began to spread across other parts of Oceania and in 2015, a large outbreak in Latin America began in Brazil. Possible associations with microcephaly and Guillain-Barré syndrome observed in this outbreak have raised concerns about continued global spread of Zika virus, prompting its declaration as a Public Health Emergency of International Concern by the World Health Organization. We conducted species distribution modelling to map environmental suitability for Zika. We show a large portion of tropical and sub-tropical regions globally have suitable environmental conditions with over 2.17 billion people inhabiting these areas. DOI: http://dx.doi.org/10.7554/eLife.15272.001


Arctic, Antarctic, and Alpine Research | 2011

Mountain Treelines: a Roadmap for Research Orientation

George P. Malanson; Lynn M. Resler; Maaike Y. Bader; Friedrich-Karl Holtmeier; David Butler; Daniel J. Weiss; Lori D. Daniels; Daniel B. Fagre

Abstract For over 100 years, mountain treelines have been the subject of varied research endeavors and remain a strong area of investigation. The purpose of this paper is to examine aspects of the epistemology of mountain treeline research—that is, to investigate how knowledge on treelines has been acquired and the changes in knowledge acquisition over time, through a review of fundamental questions and approaches. The questions treeline researchers have raised and continue to raise have undoubtedly directed the current state of knowledge. A continuing, fundamental emphasis has centered on seeking the general cause of mountain treelines, thus seeking an answer to the question, “What causes treeline?” with a primary emphasis on searching for ecophysiological mechanisms of low-temperature limitation for tree growth and regeneration. However, treeline research today also includes a rich literature that seeks local, landscape-scale causes of treelines and reasons why treelines vary so widely in three-dimensional patterns from one location to the next, and this approach and some of its consequences are elaborated here. In recent years, both lines of research have been motivated greatly by global climate change. Given the current state of knowledge, we propose that future research directions focused on a spatial approach should specifically address cross-scale hypotheses using statistics and simulations designed for nested hierarchies; these analyses will benefit from geographic extension of treeline research.


Transactions of The Royal Society of Tropical Medicine and Hygiene | 2015

The global distribution of Crimean-Congo hemorrhagic fever

Jane P. Messina; David M Pigott; Nick Golding; Kirsten A. Duda; John S. Brownstein; Daniel J. Weiss; Harry S. Gibson; Timothy P. Robinson; Marius Gilbert; G. R. William Wint; Patricia A. Nuttall; Peter W. Gething; Monica F. Myers; Dylan B. George; Simon I. Hay

Background Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne infection caused by a virus (CCHFV) from the Bunyaviridae family. Domestic and wild vertebrates are asymptomatic reservoirs for the virus, putting animal handlers, slaughter-house workers and agricultural labourers at highest risk in endemic areas, with secondary transmission possible through contact with infected blood and other bodily fluids. Human infection is characterized by severe symptoms that often result in death. While it is known that CCHFV transmission is limited to Africa, Asia and Europe, definitive global extents and risk patterns within these limits have not been well described. Methods We used an exhaustive database of human CCHF occurrence records and a niche modeling framework to map the global distribution of risk for human CCHF occurrence. Results A greater proportion of shrub or grass land cover was the most important contributor to our model, which predicts highest levels of risk around the Black Sea, Turkey, and some parts of central Asia. Sub-Saharan Africa shows more focalized areas of risk throughout the Sahel and the Cape region. Conclusions These new risk maps provide a valuable starting point for understanding the zoonotic niche of CCHF, its extent and the risk it poses to humans.


Isprs Journal of Photogrammetry and Remote Sensing | 2014

An effective approach for gap-filling continental scale remotely sensed time-series

Daniel J. Weiss; Peter M. Atkinson; Samir Bhatt; Bonnie Mappin; Simon I. Hay; Peter W. Gething

The archives of imagery and modeled data products derived from remote sensing programs with high temporal resolution provide powerful resources for characterizing inter- and intra-annual environmental dynamics. The impressive depth of available time-series from such missions (e.g., MODIS and AVHRR) affords new opportunities for improving data usability by leveraging spatial and temporal information inherent to longitudinal geospatial datasets. In this research we develop an approach for filling gaps in imagery time-series that result primarily from cloud cover, which is particularly problematic in forested equatorial regions. Our approach consists of two, complementary gap-filling algorithms and a variety of run-time options that allow users to balance competing demands of model accuracy and processing time. We applied the gap-filling methodology to MODIS Enhanced Vegetation Index (EVI) and daytime and nighttime Land Surface Temperature (LST) datasets for the African continent for 2000–2012, with a 1 km spatial resolution, and an 8-day temporal resolution. We validated the method by introducing and filling artificial gaps, and then comparing the original data with model predictions. Our approach achieved R2 values above 0.87 even for pixels within 500 km wide introduced gaps. Furthermore, the structure of our approach allows estimation of the error associated with each gap-filled pixel based on the distance to the non-gap pixels used to model its fill value, thus providing a mechanism for including uncertainty associated with the gap-filling process in downstream applications of the resulting datasets.


Malaria Journal | 2015

Re-examining environmental correlates of Plasmodium falciparum malaria endemicity: a data-intensive variable selection approach

Daniel J. Weiss; Bonnie Mappin; Ursula Dalrymple; Samir Bhatt; Ewan Cameron; Simon I. Hay; Peter W. Gething

BackgroundMalaria risk maps play an increasingly important role in disease control planning, implementation, and evaluation. The construction of these maps using modern geospatial techniques relies on covariate grids: continuous surfaces quantifying environmental factors that partially explain spatial heterogeneity in malaria endemicity. Although crucial, past variable selection processes for this purpose have often been subjective and ad-hoc, with many covariates used in modeling with little quantitative justification.MethodsThis research consists of an extensive covariate construction and selection process for predicting Plasmodium falciparum parasite rates (PfPR) in Africa for years 2000-2012. First, a literature review was conducted to establish a comprehensive list of covariates used for malaria mapping. Second, a library of covariate data was assembled to reflect this list, a process that included the construction of multiple, temporally dynamic datasets. Third, the resulting set of covariates was leveraged to create more than 50 million possible covariate terms via factorial combinations of different spatial and temporal aggregations, transformations, and pairwise interactions. Fourth, the expanded set of covariates was reduced via successive selection criteria to yield a robust covariate subset that was assessed using an out-of-sample validation approach.ResultsThe final covariate subset included predominately dynamic covariates and it substantially out-performed earlier sets used by the Malaria Atlas Project (MAP) for creating global malaria risk maps, with the pseudo-R2 value for the out-of-sample validation increasing from 0.43 to 0.52. Dynamic covariates improved the model, with 17 of the 20 new covariates consisting of monthly or annual products, but the selected covariates were typically interaction terms that included both dynamic and synoptic datasets. Thus the interplay between normal (i.e., long-term averages) and immediate conditions may be key for characterizing environmental controls on parasite rate.ConclusionsThis analysis represents the first effort to systematically audit covariate utility for malaria mapping and then derive an objective, empirically based set of environmental covariates for modeling PfPR. The new covariates produce more reliable representations of malaria risk patterns and how they are changing through time, and these covariates will be used to characterize spatially and temporally varying environmental conditions affecting PfPR within a geostatistical-modeling framework, thus building upon previous research by MAP that produced global malaria maps for 2007 and 2010.


Transactions of The Royal Society of Tropical Medicine and Hygiene | 2015

Mapping the zoonotic niche of Marburg virus disease in Africa

David M Pigott; Nick Golding; Adrian Mylne; Zhi Huang; Daniel J. Weiss; Oliver J. Brady; Moritz U. G. Kraemer; Simon I. Hay

Background Marburg virus disease (MVD) describes a viral haemorrhagic fever responsible for a number of outbreaks across eastern and southern Africa. It is a zoonotic disease, with the Egyptian rousette (Rousettus aegyptiacus) identified as a reservoir host. Infection is suspected to result from contact between this reservoir and human populations, with occasional secondary human-to-human transmission. Methods Index cases of previous human outbreaks were identified and reports of infection in animals recorded. These data were modelled within a species distribution modelling framework in order to generate a probabilistic surface of zoonotic transmission potential of MVD across sub-Saharan Africa. Results Areas suitable for zoonotic transmission of MVD are predicted in 27 countries inhabited by 105 million people. Regions are suggested for exploratory surveys to better characterise the geographical distribution of the disease, as well as for directing efforts to communicate the risk of practices enhancing zoonotic contact. Conclusions These maps can inform future contingency and preparedness strategies for MVD control, especially where secondary transmission is a risk. Coupling this risk map with patient travel histories could be used to guide the differential diagnosis of highly transmissible pathogens, enabling more rapid response to outbreaks of haemorrhagic fever.


Malaria Journal | 2014

Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000-2012: a high-resolution spatiotemporal prediction

Daniel J. Weiss; Samir Bhatt; Bonnie Mappin; Thomas P. Van Boeckel; David L. Smith; Simon I. Hay; Peter W. Gething

BackgroundTemperature suitability for malaria transmission is a useful predictor variable for spatial models of malaria infection prevalence. Existing continental or global models, however, are synoptic in nature and so do not characterize inter-annual variability in seasonal patterns of temperature suitability, reducing their utility for predicting malaria risk.MethodsA malaria Temperature Suitability Index (TSI) was created by first modeling minimum and maximum air temperature with an eight-day temporal resolution from gap-filled MODerate Resolution Imaging Spectroradiometer (MODIS) daytime and night-time Land Surface Temperature (LST) datasets. An improved version of an existing biological model for malaria temperature suitability was then applied to the resulting temperature information for a 13-year data series. The mechanism underlying this biological model is simulation of emergent mosquito cohorts on a two-hour time-step and tracking of each cohort throughout its life to quantify the impact air temperature has on both mosquito survival and sporozoite development.ResultsThe results of this research consist of 154 monthly raster surfaces that characterize spatiotemporal patterns in TSI across Africa from April 2000 through December 2012 at a 1 km spatial resolution. Generalized TSI patterns were as expected, with consistently high values in equatorial rain forests, seasonally variable values in tropical savannas (wet and dry) and montane areas, and low values in arid, subtropical regions. Comparisons with synoptic approaches demonstrated the additional information available within the dynamic TSI dataset that is lost in equivalent synoptic products derived from long-term monthly averages.ConclusionsThe dynamic TSI dataset presented here provides a new product with far richer spatial and temporal information than any other presently available for Africa. As spatiotemporal malaria modeling endeavors evolve, dynamic predictor variables such as the malaria temperature suitability data developed here will be essential for the rational assessment of changing patterns of malaria risk.


Journal of the Royal Society Interface | 2015

Fine resolution mapping of population age-structures for health and development applications

Victor A. Alegana; Peter M. Atkinson; Carla Pezzulo; Alessandro Sorichetta; Daniel J. Weiss; Tomas J. Bird; Elisabeth zu Erbach-Schoenberg; Andrew J. Tatem

The age-group composition of populations varies considerably across the world, and obtaining accurate, spatially detailed estimates of numbers of children under 5 years is important in designing vaccination strategies, educational planning or maternal healthcare delivery. Traditionally, such estimates are derived from population censuses, but these can often be unreliable, outdated and of coarse resolution for resource-poor settings. Focusing on Nigeria, we use nationally representative household surveys and their cluster locations to predict the proportion of the under-five population in 1 × 1 km using a Bayesian hierarchical spatio-temporal model. Results showed that land cover, travel time to major settlements, night-time lights and vegetation index were good predictors and that accounting for fine-scale variation, rather than assuming a uniform proportion of under 5 year olds can result in significant differences in health metrics. The largest gaps in estimated bednet and vaccination coverage were in Kano, Katsina and Jigawa. Geolocated household surveys are a valuable resource for providing detailed, contemporary and regularly updated population age-structure data in the absence of recent census data. By combining these with covariate layers, age-structure maps of unprecedented detail can be produced to guide the targeting of interventions in resource-poor settings.


PLOS Neglected Tropical Diseases | 2016

Estimating Geographical Variation in the Risk of Zoonotic Plasmodium knowlesi Infection in Countries Eliminating Malaria

Freya M Shearer; Zhi Huang; Daniel J. Weiss; Antoinette Wiebe; Harry S. Gibson; Katherine E. Battle; David M Pigott; Oliver J. Brady; Chaturong Putaporntip; Somchai Jongwutiwes; Yee Ling Lau; Magnus Manske; Roberto Amato; Iqbal Elyazar; Indra Vythilingam; Samir Bhatt; Peter W. Gething; Balbir Singh; Nick Golding; Simon I. Hay; Catherine L. Moyes

Background Infection by the simian malaria parasite, Plasmodium knowlesi, can lead to severe and fatal disease in humans, and is the most common cause of malaria in parts of Malaysia. Despite being a serious public health concern, the geographical distribution of P. knowlesi malaria risk is poorly understood because the parasite is often misidentified as one of the human malarias. Human cases have been confirmed in at least nine Southeast Asian countries, many of which are making progress towards eliminating the human malarias. Understanding the geographical distribution of P. knowlesi is important for identifying areas where malaria transmission will continue after the human malarias have been eliminated. Methodology/Principal Findings A total of 439 records of P. knowlesi infections in humans, macaque reservoir and vector species were collated. To predict spatial variation in disease risk, a model was fitted using records from countries where the infection data coverage is high. Predictions were then made throughout Southeast Asia, including regions where infection data are sparse. The resulting map predicts areas of high risk for P. knowlesi infection in a number of countries that are forecast to be malaria-free by 2025 (Malaysia, Cambodia, Thailand and Vietnam) as well as countries projected to be eliminating malaria (Myanmar, Laos, Indonesia and the Philippines). Conclusions/Significance We have produced the first map of P. knowlesi malaria risk, at a fine-scale resolution, to identify priority areas for surveillance based on regions with sparse data and high estimated risk. Our map provides an initial evidence base to better understand the spatial distribution of this disease and its potential wider contribution to malaria incidence. Considering malaria elimination goals, areas for prioritised surveillance are identified.

Collaboration


Dive into the Daniel J. Weiss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon I. Hay

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Samir Bhatt

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

David M Pigott

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nick Golding

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge