Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J. Weston is active.

Publication


Featured researches published by Daniel J. Weston.


Proteomics Clinical Applications | 2007

Diagnostic biomarkers differentiating metastatic melanoma patients from healthy controls identified by an integrated MALDI-TOF mass spectrometry/bioinformatic approach

Balwir Matharoo-Ball; Lucy Ratcliffe; Lee Lancashire; Selma Ugurel; Amanda K. Miles; Daniel J. Weston; Robert Rees; Dirk Schadendorf; Graham Ball; Colin S. Creaser

The prognosis of advanced metastatic melanoma (American Joint Committee on Cancer (AJCC) stage IV) remains dismal with a 5‐year survival rate of 6–18%. In the present study, an integrated MALDI mass spectrometric approach combined with artificial neural networks (ANNs) analysis and modeling has been used for the identification of biomarker ions in serum from stage IV melanoma patients allowing the discrimination of metastatic disease from healthy status with high specificities of 92% for protein ions and 100% for peptide biomarkers. Our ANNs model also correctly classified 98% of a blind validation set of AJCC stage I melanoma samples as nonstage IV samples, emphasizing the power of the newly defined biomarkers to identify patients with late‐stage metastatic melanoma. Sequence analysis identified peptides derived from metastasis‐associated proteins; alpha 1‐acid glycoprotein precursor‐1/2 (AAG‐1/2) and complement C3 component precursor‐1 (CCCP‐1). Furthermore, quantitation of serum AAG by an immunoassay showed a significant (p<0.001) increase in AAG serum concentration in stage IV patients in comparison with healthy volunteers; moreover; the quantity of AAG plotted against MALDI‐MS peak intensity classified the groups into two distinct clusters. Ongoing studies of other disease stages will provide evidence whether our strategy is sufficiently robust to give rise to stage‐specific protein/peptide signatures in melanoma.


Journal of Chromatography B | 2008

An approach to enhancing coverage of the urinary metabonome using liquid chromatography–ion mobility–mass spectrometry ☆

Emma L. Harry; Daniel J. Weston; Anthony W. T. Bristow; Ian D. Wilson; Colin S. Creaser

The potential of drift tube ion mobility (IM) spectrometry in combination with high performance liquid chromatography (LC) and mass spectrometry (MS) for the metabonomic analysis of rat urine is reported. The combined LC-IM-MS approach using quadrupole/time-of-flight mass spectrometry with electrospray ionisation, uses gas-phase analyte characterisation based on both mass-to-charge (m/z) ratio and relative gas-phase mobility (drift time) following LC separation. The technique allowed the acquisition of nested data sets, with mass spectra acquired at regular intervals (65 micros) during each IMS separation (approximately 13 ms) and several IMS spectra acquired during the elution of a single LC peak, without increasing the overall analysis time compared to LC-MS. Preliminary results indicate that spectral quality is improved when using LC-IM-MS, compared to direct injection IM-MS, for which significant ion suppression effects were observed in the electrospray ion source. The use of reversed-phase LC employing fast gradient elution reduced sample preparation to a minimum, whilst maintaining the potential for high throughput analysis. Data mining allowed information on specific analytes to be extracted from the complex metabonomic data set. LC-IM-MS based approaches may have a useful role in metabonomic analyses by introducing an additional discriminatory dimension of ion mobility (drift time).


Xenobiotica | 2011

Utility of spatially-resolved atmospheric pressure surface sampling and ionization techniques as alternatives to mass spectrometric imaging (MSI) in drug metabolism

Eleanor Q. Blatherwick; Gary J. Van Berkel; Kathryn Pickup; Maria Johansson; Marie-Eve Beaudoin; Roderic O. Cole; Jennifer M. Day; Suzanne L. Iverson; Ian D. Wilson; James H. Scrivens; Daniel J. Weston

Tissue distribution studies of drug molecules play an essential role in the pharmaceutical industry and are commonly undertaken using quantitative whole body autoradiography (QWBA) methods. The growing need for complementary methods to address some scientific gaps around radiography methods has led to increased use of mass spectrometric imaging (MSI) technology over the last 5 to 10 years. More recently, the development of novel mass spectrometric techniques for ambient surface sampling has redefined what can be regarded as “fit-for-purpose” for MSI in a drug metabolism and disposition arena. Together with a review of these novel alternatives, this paper details the use of two liquid microjunction (LMJ)-based mass spectrometric surface sampling technologies. These approaches are used to provide qualitative determination of parent drug in rat liver tissue slices using liquid extraction surface analysis (LESA) and to assess the performance of a LMJ surface sampling probe (LMJ-SSP) interface for quantitative assessment of parent drug in brain, liver and muscle tissue slices. An assessment of the utility of these spatially-resolved sampling methods is given, showing interdependence between mass spectrometric and QWBA methods, in particular there emerges a reason to question typical MSI workflows for drug metabolism; suggesting the expedient use of profile or region analysis may be more appropriate, rather than generating time-intensive molecular images of the entire tissue section.


Analytical Chemistry | 2012

Enhanced analyte detection using in-source fragmentation of field asymmetric waveform ion mobility spectrometry-selected ions in combination with time-of-flight mass spectrometry.

Lauren J. Brown; Robert W. Smith; Danielle E. Toutoungi; James C. Reynolds; Anthony W. T. Bristow; Andrew Ray; Ashley Sage; Ian D. Wilson; Daniel J. Weston; Billy Boyle; Colin S. Creaser

Miniaturized ultra high field asymmetric waveform ion mobility spectrometry (FAIMS) is used for the selective transmission of differential mobility-selected ions prior to in-source collision-induced dissociation (CID) and time-of-flight mass spectrometry (TOFMS) analysis. The FAIMS-in-source collision induced dissociation-TOFMS (FISCID-MS) method requires only minor modification of the ion source region of the mass spectrometer and is shown to significantly enhance analyte detection in complex mixtures. Improved mass measurement accuracy and simplified product ion mass spectra were observed following FAIMS preselection and subsequent in-source CID of ions derived from pharmaceutical excipients, sufficiently close in m/z (17.7 ppm mass difference) that they could not be resolved by TOFMS alone. The FISCID-MS approach is also demonstrated for the qualitative and quantitative analysis of mixtures of peptides with FAIMS used to filter out unrelated precursor ions thereby simplifying the resulting product ion mass spectra. Liquid chromatography combined with FISCID-MS was applied to the analysis of coeluting model peptides and tryptic peptides derived from human plasma proteins, allowing precursor ion selection and CID to yield product ion data suitable for peptide identification via database searching. The potential of FISCID-MS for the quantitative determination of a model peptide spiked into human plasma in the range of 0.45-9.0 μg/mL is demonstrated, showing good reproducibility (%RSD < 14.6%) and linearity (R(2) > 0.99).


Analyst | 2007

Analysis of pharmaceutical formulations using atmospheric pressure ion mobility spectrometry combined with liquid chromatography and nano-electrospray ionisation

Natali Budimir; Daniel J. Weston; Colin S. Creaser

The hyphenation of liquid chromatography with atmospheric pressure ion mobility spectrometry is reported using a custom-made dynamic nano-electrospray ionisation (nano-ESI) interface. The analysis of pharmaceutical actives is described, including beta blocker (timolol), antidepressant (paroxetine), analgesic (paracetamol) and opiate (codeine) preparations. On-line ultraviolet diode array (UV) spectroscopic detection was used prior to sample ionisation, to evaluate chromatographic and nano-ESI interface performance. Active drug responses were characterised by chromatographic retention time and electrophoretic ion mobility drift time, and selected ion mobility responses were used to evaluate method performance. Limits of detection for active drugs were in the low-nmol to pmol range. Quantitative responses were investigated using a series of standard solutions of caffeine, showing good linearity (R(2) = 0.9982, n = 6) and reproducibility (RSD = 2.3 %, n = 6). The analysis of an over the counter pharmaceutical formulation demonstrates the potential of ion mobility spectrometry combined with liquid chromatography and nano-electrospray ionisation for the rapid determination of active drugs, as a result of the electrophoretic separation and selectivity afforded by IMS.


Analytical Chemistry | 2013

Direct Detection of a Sulfonate Ester Genotoxic Impurity by Atmospheric-Pressure Thermal Desorption–Extractive Electrospray–Mass Spectrometry

Neil A. Devenport; Laura Sealey; Faisal H. Alruways; Daniel J. Weston; James C. Reynolds; Colin S. Creaser

A direct, ambient ionization method has been developed using atmospheric pressure thermal desorption-extractive electrospray-mass spectrometry (AP/TD-EESI-MS) for the detection of the genotoxic impurity (GTI) methyl p-toluenesulfonate (MTS) in a surrogate pharmaceutical matrix. A custom-made thermal desorption probe was used to the desorb and vaporize MTS from the solid state, by rapid heating to 200 °C then cooling to ambient temperature, with a cycle time of 6 min. The detection of MTS using EESI with a sodium acetate doped solvent to generate the [MTS+Na](+) adduct ion provided a significant sensitivity enhancement relative to the [M+H](+) ion generated using a 0.1% formic acid solvent modifier. The MTS detection limit is over an order of magnitude below the long-term daily threshold of toxicological concern (TTC) of 1.5 μg/g and the potential for quantitative analysis has been determined using starch as a surrogate active pharmaceutical ingredient (API).


Journal of Chromatography A | 2013

Enhanced performance in the determination of ibuprofen 1-β-O-acyl glucuronide in urine by combining high field asymmetric waveform ion mobility spectrometry with liquid chromatography-time-of-flight mass spectrometry

Robert W. Smith; Danielle E. Toutoungi; James C. Reynolds; Anthony W. T. Bristow; Andrew Ray; Ashley Sage; Ian D. Wilson; Daniel J. Weston; Billy Boyle; Colin S. Creaser

The incorporation of a chip-based high field asymmetric waveform ion mobility spectrometry (FAIMS) separation in the ultra (high)-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) determination of the (R/S) ibuprofen 1-β-O-acyl glucuronide metabolite in urine is reported. UHPLC-FAIMS-HRMS reduced matrix chemical noise, improved the limit of quantitation approximately two-fold and increased the linear dynamic range compared to the determination of the metabolite without FAIMS separation. A quantitative evaluation of the prototype UHPLC-FAIMS-HRMS system showed better reproducibility for the drug metabolite (%RSD 2.7%) at biologically relevant concentrations in urine. In-source collision induced dissociation of the FAIMS-selected deprotonated metabolite was used to fragment the ion prior to mass analysis, enhancing selectivity by removing co-eluting species and aiding the qualitative identification of the metabolite by increasing the signal-to-noise ratio of the fragment ions.


Journal of Chromatography B | 2011

Determination of free desmosine and isodesmosine as urinary biomarkers of lung disorder using ultra performance liquid chromatography-ion mobility-mass spectrometry.

Neil A. Devenport; James C. Reynolds; Ved Parkash; Jason Cook; Daniel J. Weston; Colin S. Creaser

The elastin degradation products, desmosine (DES) and isodesmosine (IDES) are highly stable, cross-linking amino-acids that are unique to mature elastin. The excretion of DES/IDES in urine, in the free form and with associated peptide fragments, provides an indicator of lung damage in chronic obstructive pulmonary disease (COPD). A quantitative ion mobility-mass spectrometry (IM-MS) method has been developed for the analysis of free DES/IDES in urine with deuterated IDES as an internal standard. Resolution of DES/IDES isomers was achieved in less than five minutes using ultra performance liquid chromatography (UPLC) combined with ion pairing. The optimized UPLC-IM-MS method provided a linear dynamic range of 10-300 ng/mL and a limit of quantitation of 0.028 ng/mL for IDES and 0.03 ng/mL for DES (0.55 ng and 0.61 ng on column respectively). The method reproducibility (%RSD) was <4% for DES and IDES. The UPLC-IM-MS method was applied to the analysis of urine samples obtained from healthy volunteers and COPD patients. The DES/IDES concentrations in healthy and COPD urine showed an increase in DES (79%) and IDES (74%) in the COPD samples, relative to healthy controls. The incorporation of an IM separation prior to m/z measurement by MS was shown to reduce non-target ion responses from the bio-fluid matrix.


Journal of Pharmaceutical and Biomedical Analysis | 2012

Evaluation of laser diode thermal desorption (LDTD) coupled with tandem mass spectrometry (MS/MS) for support of in vitro drug discovery assays: Increasing scope, robustness and throughput of the LDTD technique for use with chemically diverse compound libraries

Iain Beattie; Aaron Smith; Daniel J. Weston; Peter White; Simon Szwandt; Laura Sealey

Within the drug discovery environment, the key process in optimising the chemistry of a structural series toward a potential drug candidate is the design, make and test cycle, in which the primary screens consist of a number of in vitro assays, including metabolic stability, cytochrome P450 inhibition, and time-dependent inhibition assays. These assays are often carried out using multiple drug compounds with chemically diverse structural features, often in a 96 well-plate format for maximum time-efficiency, and are supported using rapid liquid chromatographic (LC) sample introduction with a tandem mass spectrometry (MS/MS) selected reaction monitoring (SRM) endpoint, taking around 6.5 h per plate. To provide a faster time-to-decision at this critical point, there exists a requirement for higher sample throughput and a robust, well-characterized analytical alternative. This paper presents a detailed evaluation of laser diode thermal desorption (LDTD), a relatively new ambient sample ionization technique, for compound screening assays. By systematic modification of typical LDTD instrumentation and workflow, and providing deeper understanding around overcoming a number of key issues, this work establishes LDTD as a practical, rapid alternative to conventional LC-MS/MS in drug discovery, without need for extensive sample preparation or expensive, scope-limiting internal standards. Analysis of both the five and three cytochrome P450 competitive inhibition assay samples by LDTD gave improved sample throughput (0.75 h per plate) and provided comparable data quality as the IC₅₀ values obtained were within 3 fold of those calculated from the LC-MS/MS data. Additionally when applied generically to a chemically diverse library of over 250 proprietary compounds from the AstraZeneca design, make and test cycle, LDTD demonstrated a success rate of 98%.


Analytical Chemistry | 2014

Direct determination of urinary creatinine by reactive-thermal desorption-extractive electrospray-ion mobility-tandem mass spectrometry.

Neil A. Devenport; Daniel J. Blenkhorn; Daniel J. Weston; James C. Reynolds; Colin S. Creaser

A direct, ambient ionization method has been developed for the determination of creatinine in urine that combines derivatization and thermal desorption with extractive electrospray ionization and ion mobility-mass spectrometry. The volatility of creatinine was enhanced by a rapid on-probe aqueous acylation reaction, using a custom-made thermal desorption probe, allowing thermal desorption and ionization of the monoacylated derivative. The monoacyl creatinine [M + H]+ ion (m/z 156) was subjected to mass-to-charge selection and collision induced dissociation to remove the acyl group, generating the protonated creatinine [M + H]+ product ion at m/z 114 before an ion mobility separation was applied to reduce chemical noise. Stable isotope dilution using creatinine-d3 as internal standard was used for quantitative measurements. The direct on-probe derivatization allows high sample throughput with a typical cycle time of 1 min per sample. The method shows good linearity (R2 = 0.986) and repeatability (%RSD 8–10%) in the range of 0.25–2.0 mg/mL. The creatinine concentrations in diluted urine samples from a healthy individual were determined to contain a mean concentration of 1.44 mg/mL creatinine with a precision (%RSD) of 9.9%. The reactive ambient ionization approach demonstrated here has potential for the determination of involatile analytes in urine and other biofluids.

Collaboration


Dive into the Daniel J. Weston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip L.R. Bonner

Nottingham Trent University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge