Daniel J. Whitcomb
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel J. Whitcomb.
Cell | 2010
Zheng Li; Jihoon Jo; Jie-Min Jia; Shih-Ching Lo; Daniel J. Whitcomb; Song Jiao; Kwangwook Cho; Morgan Sheng
NMDA receptor-dependent synaptic modifications, such as long-term potentiation (LTP) and long-term depression (LTD), are essential for brain development and function. LTD occurs mainly by the removal of AMPA receptors from the postsynaptic membrane, but the underlying molecular mechanisms remain unclear. Here, we show that activation of caspase-3 via mitochondria is required for LTD and AMPA receptor internalization in hippocampal neurons. LTD and AMPA receptor internalization are blocked by peptide inhibitors of caspase-3 and -9. In hippocampal slices from caspase-3 knockout mice, LTD is abolished whereas LTP remains normal. LTD is also prevented by overexpression of the anti-apoptotic proteins XIAP or Bcl-xL, and by a mutant Akt1 protein that is resistant to caspase-3 proteolysis. NMDA receptor stimulation that induces LTD transiently activates caspase-3 in dendrites, without causing cell death. These data indicate an unexpected causal link between the molecular mechanisms of apoptosis and LTD.
Nature Neuroscience | 2011
Jihoon Jo; Daniel J. Whitcomb; Kimberly Moore Olsen; Talitha L. Kerrigan; Shih-Ching Lo; Gilles Bru-Mercier; Bryony Dickinson; Sarah Scullion; Morgan Sheng; Graham L. Collingridge; Kwangwook Cho
Amyloid-β1–42 (Aβ) is thought to be a major mediator of the cognitive deficits in Alzheimers disease. The ability of Aβ to inhibit hippocampal long-term potentiation provides a cellular correlate of this action, but the underlying molecular mechanism is only partially understood. We found that a signaling pathway involving caspase-3, Akt1 and glycogen synthase kinase-3β is an important mediator of this effect in rats and mice.
PLOS ONE | 2009
Andrew Collins; Louise E. Hill; Yalini Chandramohan; Daniel J. Whitcomb; Susanne K. Droste; Johannes M. H. M. Reul
Background We have shown previously that exercise benefits stress resistance and stress coping capabilities. Furthermore, we reported recently that epigenetic changes related to gene transcription are involved in memory formation of stressful events. In view of the enhanced coping capabilities in exercised subjects we investigated epigenetic, gene expression and behavioral changes in 4-weeks voluntarily exercised rats. Methodology/Principal Findings Exercised and control rats coped differently when exposed to a novel environment. Whereas the control rats explored the new cage for the complete 30-min period, exercised animals only did so during the first 15 min after which they returned to sleeping or resting behavior. Both groups of animals showed similar behavioral responses in the initial forced swim session. When re-tested 24 h later however the exercised rats showed significantly more immobility behavior and less struggling and swimming. If rats were killed at 2 h after novelty or the initial swim test, i.e. at the peak of histone H3 phospho-acetylation and c-Fos induction, then the exercised rats showed a significantly higher number of dentate granule neurons expressing the histone modifications and immediate-early gene induction. Conclusions/Significance Thus, irrespective of the behavioral response in the novel cage or initial forced swim session, the impact of the event at the dentate gyrus level was greater in exercised rats than in control animals. Furthermore, in view of our concept that the neuronal response in the dentate gyrus after forced swimming is involved in memory formation of the stressful event, the observations in exercised rats of enhanced neuronal responses as well as higher immobility responses in the re-test are consistent with the reportedly improved cognitive performance in these animals. Thus, improved stress coping in exercised subjects seems to involve enhanced cognitive capabilities possibly resulting from distinct epigenetic mechanisms in dentate gyrus neurons.
Philosophical Transactions of the Royal Society B | 2013
Tetsuya Kimura; Daniel J. Whitcomb; Jihoon Jo; Philip Regan; Thomas Piers; Seonghoo Heo; Christopher A. Brown; Tsutomu Hashikawa; Miyuki Murayama; Heon Seok; Ioannis Sotiropoulos; Eunjoon Kim; Graham L. Collingridge; Akihiko Takashima; Kwangwook Cho
The microtubule-associated protein tau is a principal component of neurofibrillary tangles, and has been identified as a key molecule in Alzheimers disease and other tauopathies. However, it is unknown how a protein that is primarily located in axons is involved in a disease that is believed to have a synaptic origin. To investigate a possible synaptic function of tau, we studied synaptic plasticity in the hippocampus and found a selective deficit in long-term depression (LTD) in tau knockout mice in vivo and in vitro, an effect that was replicated by RNAi knockdown of tau in vitro. We found that the induction of LTD is associated with the glycogen synthase kinase-3-mediated phosphorylation of tau. These observations demonstrate that tau has a critical physiological function in LTD.
Frontiers in Molecular Neuroscience | 2012
Clarrisa A. Bradley; Stéphane Peineau; Changiz Taghibiglou; Céline S. Nicolas; Daniel J. Whitcomb; Zuner A. Bortolotto; Bong-Kiun Kaang; Kwangwook Cho; Yu Tian Wang; Graham L. Collingridge
Glycogen synthase kinase-3 (GSK-3) has many cellular functions. Recent evidence suggests that it plays a key role in certain types of synaptic plasticity, in particular a form of long-term depression (LTD) that is induced by the synaptic activation of N-methyl-D-aspartate receptors (NMDARs). In the present article we summarize what is currently known concerning the roles of GSK-3 in synaptic plasticity at both glutamatergic and GABAergic synapses. We summarize its role in cognition and speculate on how alterations in the synaptic functioning of GSK-3 may be a major factor in certain neurodegenerative disorders.
Nature Neuroscience | 2010
Jihoon Jo; Gi Hoon Son; Bryony L. Winters; Myung Jong Kim; Daniel J. Whitcomb; Bryony Dickinson; Youn Bok Lee; Kensuke Futai; Mascia Amici; Morgan Sheng; Graham L. Collingridge; Kwangwook Cho
Although muscarinic acetylcholine receptors (mAChRs) and NMDA receptors (NMDARs) are important for synaptic plasticity, learning and memory, the manner in which they interact is poorly understood. We found that stimulation of muscarinic receptors, either by an agonist or by the synaptic release of acetylcholine, led to long-term depression (LTD) of NMDAR-mediated synaptic transmission. This form of LTD involved the release of Ca2+ from IP3-sensitive intracellular stores and was expressed via the internalization of NMDARs. Our results suggest that the molecular mechanism involves a dynamic interaction between the neuronal calcium sensor protein hippocalcin, the clathrin adaptor molecule AP2, the postsynaptic density enriched protein PSD-95 and NMDARs. We propose that hippocalcin binds to the SH3 region of PSD-95 under basal conditions, but it translocates to the plasma membrane on sensing Ca2+; in doing so, it causes PSD-95 to dissociate from NMDARs, permitting AP2 to bind and initiate their dynamin-dependent endocytosis.
The Journal of Neuroscience | 2010
Daeyoung Oh; Seungnam Han; Jinsoo Seo; Jae-Ran Lee; Jeonghoon Choi; John Groffen; Karam Kim; Yi Sul Cho; Han Saem Choi; Hyewon Shin; Jooyeon Woo; Hyejung Won; Soon Kwon Park; Soo Young Kim; Jihoon Jo; Daniel J. Whitcomb; Kwangwook Cho; Hyun Soo Kim; Yong Chul Bae; Nora Heisterkamp; Se-Young Choi; Eunjoon Kim
Rho family small GTPases are important regulators of neuronal development. Defective Rho regulation causes nervous system dysfunctions including mental retardation and Alzheimers disease. Rac1, a member of the Rho family, regulates dendritic spines and excitatory synapses, but relatively little is known about how synaptic Rac1 is negatively regulated. Breakpoint cluster region (BCR) is a Rac GTPase-activating protein known to form a fusion protein with the c-Abl tyrosine kinase in Philadelphia chromosome-positive chronic myelogenous leukemia. Despite the fact that BCR mRNAs are abundantly expressed in the brain, the neural functions of BCR protein have remained obscure. We report here that BCR and its close relative active BCR-related (ABR) localize at excitatory synapses and directly interact with PSD-95, an abundant postsynaptic scaffolding protein. Mice deficient for BCR or ABR show enhanced basal Rac1 activity but only a small increase in spine density. Importantly, mice lacking BCR or ABR exhibit a marked decrease in the maintenance, but not induction, of long-term potentiation, and show impaired spatial and object recognition memory. These results suggest that BCR and ABR have novel roles in the regulation of synaptic Rac1 signaling, synaptic plasticity, and learning and memory, and that excessive Rac1 activity negatively affects synaptic and cognitive functions.
The Journal of Neuroscience | 2015
Philip Regan; X Thomas Piers; Jee-Hyun Yi; D. Kim; Seonghoo Huh; Se Jin Park; Jong Hoon Ryu; Daniel J. Whitcomb; Kwangwook Cho
Tau is required for the induction of long-term depression (LTD) of synaptic transmission in the hippocampus. Here we probe the role of tau in LTD, finding that an AMPA receptor internalization mechanism is impaired in tau KO mice, and that LTD causes specific phosphorylation at the serine 396 and 404 residues of tau. Surprisingly, we find that phosphorylation at serine 396, specifically, is critical for LTD but has no role in LTP. Finally, we show that tau KO mice exhibit deficits in spatial reversal learning. These findings underscore the physiological role for tau at the synapse and identify a behavioral correlate of its role in LTD.
Molecular Brain | 2009
Bryony Dickinson; Jihoon Jo; Heon Seok; Gi Hoon Son; Daniel J. Whitcomb; Ceri H. Davies; Morgan Sheng; Graham L. Collingridge; Kwangwook Cho
BackgroundLong-term depression (LTD) in the hippocampus can be induced by activation of different types of G-protein coupled receptors, in particular metabotropic glutamate receptors (mGluRs) and muscarinic acethycholine receptors (mAChRs). Since mGluRs and mAChRs activate the same G-proteins and isoforms of phospholipase C (PLC), it would be expected that these two forms of LTD utilise the same molecular mechanisms. However, we find a distinct mechanism of LTD involving GRIP and liprin-α.ResultsWhilst both forms of LTD require activation of tyrosine phosphatases and involve internalisation of AMPARs, they use different molecular interactions. Specifically, mAChR-LTD, but not mGluR-LTD, is blocked by peptides that inhibit the binding of GRIP to the AMPA receptor subunit GluA2 and the binding of GRIP to liprin-α. Thus, different receptors that utilise the same G-proteins can regulate AMPAR trafficking and synaptic efficacy via distinct molecular mechanisms.ConclusionOur results suggest that mAChR-LTD selectively involves interactions between GRIP and liprin-α. These data indicate a novel mechanism of synaptic plasticity in which activation of M1 receptors results in AMPAR endocytosis, via a mechanism involving interactions between GluA2, GRIP and liprin-α.
Brain | 2013
Garry Whitehead; Jihoon Jo; Ellen L. Hogg; Thomas Piers; D. Kim; Gillian Seaton; Heon Seok; Gilles Bru-Mercier; Gi Hoon Son; Philip Regan; Lars Hildebrandt; Eleanor Waite; Byeong Chae Kim; Talitha L. Kerrigan; Kyungjin Kim; Daniel J. Whitcomb; Graham L. Collingridge; Stafford L. Lightman; Kwangwook Cho
The neuroendocrine response to episodes of acute stress is crucial for survival whereas the prolonged response to chronic stress can be detrimental. Learning and memory are particularly susceptible to stress with cognitive deficits being well characterized consequences of chronic stress. Although there is good evidence that acute stress can enhance cognitive performance, the mechanism(s) for this are unclear. We find that hippocampal slices, either prepared from rats following 30 min restraint stress or directly exposed to glucocorticoids, exhibit an N-methyl-d-aspartic acid receptor-independent form of long-term potentiation. We demonstrate that the mechanism involves an NMDA receptor and PKA-dependent insertion of Ca2+-permeable AMPA receptors into synapses. These then trigger the additional NMDA receptor-independent form of LTP during high frequency stimulation.