Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Junqueira Dorta is active.

Publication


Featured researches published by Daniel Junqueira Dorta.


Toxicology in Vitro | 2013

BDE-99 congener induces cell death by apoptosis of human hepatoblastoma cell line - HepG2.

Alecsandra Oliveira de Souza; Lilian Cristina Pereira; Danielle Palma de Oliveira; Daniel Junqueira Dorta

Polybrominated Diphenyl Ethers (PBDEs) are an important class of flame retardants with a wide range of toxic effects on biotic and abiotic systems. The toxic mechanisms of PBDEs are still not completely understood because there are several different congeners with different chemical and biological characteristics. BDE-99 is one of these, widely found in the environment and biological samples, showing evidence of neurotoxic and endocrine disruption activities, but with little information about its action mechanism described in the current literature. This work investigated the effects of BDE-99 on the HepG2 cell line in order to clarify its toxic mechanism, using concentrations of 0.5-25 μM (24 and 48 h). Our results showed that BDE-99 could cause cell death in the higher concentrations, its activity being related to a decrease in mitochondrial membrane potential and an accumulation of ROS. It was also shown that BDE-99 induced the exposure of phosphatidylserine, caspases 3 and 9 activation and DNA fragmentation in HepG2 cells, without causing the release of LDH. Thus it was shown that BDE-99 could cause HepG2 cell death by apoptosis, suggesting its toxicity to the human liver.


Basic & Clinical Pharmacology & Toxicology | 2013

Polybrominated Diphenyl Ether Congener (BDE-100) Induces Mitochondrial Impairment

Lilian Cristina Pereira; Alecsandra Oliveira de Souza; Daniel Junqueira Dorta

Brominated flame retardants are used in various consumer products to increase their resistance to fire and/or high temperatures. Polybrominated diphenyl ethers (PBDEs) are representatives of this class and among the most widely used congeners, and BDE‐100 is produced on a large scale. There is a lack of toxicological data about these compounds, which has recently become a matter of concern to the scientific community. The mitochondria are recognized as the main energy‐producing organelles, as well as playing a vital role in the maintenance of many cell functions. Therefore, mitochondria were used in the present work as an experimental model to evaluate the effects of the BDE‐100 congeners at concentrations ranging from 0.1 μM to 50 μM. The results showed that high concentrations of BDE‐100 were able to induce mitochondrial alterations. It was observed that the substance had an affinity for the hydrophilic portion of the mitochondrial membrane, as monitored by ANS, inhibiting the glutamate + malate‐stimulated mitochondrial respiration and also inducing dissipation of the mitochondrial membrane potential, deregulation of calcium homoeostasis and mitochondrial swelling, the latter being insensitive to cyclosporin A (CsA) but partially inhibited by Ruthenium Red and N‐ethyl maleimide. In addition, a significant reduction in mitochondrial ATP content was found, but on the other hand, no oxidative stress was observed after exposure of the mitochondria to BDE‐100. These results show the key role of mitochondria in the cytotoxicity induced by BDE‐100.


Toxicon | 2009

Dehydromonocrotaline induces cyclosporine A-insensitive mitochondrial permeability transition/cytochrome c release

Aline Buda dos Santos; Daniel Junqueira Dorta; Cezar R. Pestana; Marcos A. Maioli; Carlos Curti; Fábio Erminio Mingatto

Monocrotaline (MCT) is a pyrrolizidine alkaloid present in plants of the genus Crotalaria that causes cytotoxicity and genotoxicity in animals and humans. It is well established that the toxicity of MCT results from its hepatic bioactivation to dehydromonocrotaline (DHM), an alkylating agent, but the exact mechanism of action remains unknown. In a previous study, we demonstrated DHMs inhibition of mitochondrial NADH-dehydrogenase activity at micromolar concentrations, which is an effect associated with a significant reduction in ATP synthesis. As a follow-up study, we have evaluated the ability of DHM to induce mitochondrial permeability transition (MPT) and its associated processes in isolated rat liver mitochondria. In the presence of 10 microM Ca(2+), DHM (50-250 microM) elicited MPT in a concentration-dependent, but cyclosporine A-independent manner, as assessed by mitochondrial swelling, which is associated with mitochondrial Ca(2+) efflux and cytochrome c release. DHM (50-250 microM) did not cause hydrogen peroxide accumulation but did deplete endogenous glutathione and NAD(P)H, while oxidizing protein thiol groups. These results potentially indicate the involvement of mitochondria, via apoptosis, in the well-documented cytotoxicity of monocrotaline.


Toxicology Mechanisms and Methods | 2015

Toxicity of brominated flame retardants, BDE-47 and BDE-99 stems from impaired mitochondrial bioenergetics

Murilo Pazin; Lilian Cristina Pereira; Daniel Junqueira Dorta

Abstract Polybrominated diphenyl ethers (PBDEs) are used as flame retardants, and they have been detected in human blood, adipose tissue and breast milk, a consequence of their physicochemical and bioaccumulative properties, as well as their high environmental persistence. Many studies report liver toxicity related to exposure to PBDEs. In the present study, we investigated the toxicity of BDE-47 and BDE-99 at concentrations ranging from 0.1 to 50u2009µM in isolated rat liver mitochondria. We evaluated how incubation of a mitochondrial suspension with the PBDEs affected the mitochondrial inner membrane, membrane potential, oxygen consumption, calcium release, mitochondrial swelling, and ATP levels to find out whether the tested compound interfered with the bioenergetics of this organelle. Both PBDEs were toxic to mitochondria: BDE-47 and BDE-99 concentrations equal to or higher than 25 and 50u2009µM, respectively, modified all the parameters used to assess mitochondrial bioenergetics, which culminated in ATP depletion. These effects stemmed from the ability of both PBDEs to cause Membrane Permeability Transition (MPT) in mitochondria, which impaired mitochondrial bioenergetics. In particular, BDE-47, which has fewer bromine atoms in the molecule, can easily overcome biological membranes what would be responsible for the major negative effects exerted by this congener when compared with BDE-99.


Journal of Toxicology and Environmental Health | 2014

BDE-154 Induces Mitochondrial Permeability Transition and Impairs Mitochondrial Bioenergetics

Lilian Cristina Pereira; Luiz Felippe Cabral Miranda; Alecsandra Oliveira de Souza; Daniel Junqueira Dorta

Brominated flame retardants are used in various consumer goods to make these materials difficult to burn. Polybrominated diphenyl ethers (PBDE), which are representative of this class of retardants, consist of two benzene rings linked by an oxygen atom, and contain between 1 and 10 bromine atoms in their chemical structure, with the possibility of up to 209 different congeners. Among these congeners, BDE-154 (hexa-BDE) is persistent in the environment and easy to detect in the biota, but no apparent information regarding the mechanism underlying action and toxicity is available. Mitochondria, as the main energy-producing organelles, play an important role in the maintenance of various cellular functions. Therefore, mitochondria were used in the present study as an experimental model to determine the effects of BDE-154 congener at concentrations ranging from 0.1 μM to 50 μM. Our results demonstrated that BDE-154 interacts with the mitochondrial membrane, preferably by inserting into the hydrophobic core of the mitochondrial membrane, which partially inhibits respiration, dissipates Δψ, and permeabilizes the inner mitochondrial membrane to deplete ATP. These effects are more pronounced at concentrations equal to or higher than 10 μM. Results also showed that BDE-154 did not induce reactive oxygen species (ROS) accumulation within the mitochondria, indicating the absence of oxidative stress. Therefore, BDE-154 impairs mitochondrial bioenergetics and permeabilizes the mitochondrial membrane, potentially leading to cell death but not via mechanisms involving oxidative stress.


Journal of Toxicology and Environmental Health | 2012

Evaluation of the mutagenic activity of chrysin, a flavonoid inhibitor of the aromatization process

Gisele Augusto Rodrigues de Oliveira; Elisa Raquel Anastácio Ferraz; Alecsandra Oliveira de Souza; R. A. Lourenco; Danielle Palma de Oliveira; Daniel Junqueira Dorta

Chrysin is one of the natural flavonoids present in plants, and large amounts are present in honey and propolis. In addition to anticancer, antioxidation, and anti-inflammatory activities, chrysin has also been reported to be an inhibitor of aromatase, an enzyme converting testosterone into estrogen. The present study evaluated the mutagenicity of this flavonoid using micronucleus (MN) with HepG2 cells and Salmonella. Cell survival after exposure to different concentrations of chrysin was also determined using sulforhodamine B (SRB) colorimetric assay in HepG2 cells and the influence of this flavonoid on growth of cells in relation to the cell cycle and apoptosis. The MN test showed that from 1 to 15 μM of this flavonoid mutagenic activity was noted in HepG2 cells. The Salmonella assay demonstrated a positive response to the TA100 Salmonella strain in the presence or absence of S9, suggesting that this compound acted on DNA, inducing base pair substitution before or after metabolism via cytochrome P-450. The SRB assay illustrated that chrysin promoted growth inhibition of HepG2 cells in both periods studied (24 and 48 h). After 24 h of exposure it was noted that the most significant results were obtained with a concentration of 50 μM, resulting in 83% inhibition and SubG0 percentage of 12%. After 48 h of incubation cell proliferation inhibition rates (97% at 50 μM) were significantly higher. Our results showed that chrysin is a mutagenic and cytotoxic compound in cultured human HepG2 cells and Salmonella typhimurium. Although it is widely accepted that flavonoids are substances beneficial to health, one must evaluate the risk versus benefit relationship and concentrations of these substances to which an individual may be exposed.


Journal of Toxicology and Environmental Health | 2017

Exposure to decabromodiphenyl ether (BDE-209) produces mitochondrial dysfunction in rat liver and cell death

Lilian C Pereira; Alecsandra Oliveira de Souza; Maria Júlia Tasso; Alana M C Oliveira; Filipe V. Duarte; Carlos M. Palmeira; Daniel Junqueira Dorta

ABSTRACT Polybrominated diphenyl ethers (PBDE) are ubiquitous environmental pollutants. Exposure to these chemicals has been associated with developmental neurotoxicity, endocrine dysfunctions, reproductive disorders, and hepatotoxicity. The widespread use of PBDE as flame retardants has culminated in daily exposure of humans and wildlife to these contaminants and resulted in their banned use. Thus assessment of the potential effects of each PBDE congener on living organisms has become cause for concern. The aim of this study was to (1) examine the effects of decabromodiphenyl ether (BDE)-209 on different functions of HepG2 cells and (2) investigate whether this congener is involved in mitochondrial toxicity. The use of multiple methods was employed to (i) study the influence of BDE-209 on mitochondrial permeability transition (MPT) process in mitochondria isolated from rat liver and (ii) determine the consequential cellular damage. Our results showed that BDE-209 induced matrix swelling related to MPT with 10 µM and ATP depletion with 0.1 µM. In addition, 0.5 μM BDE-209 reduced HepG2 cell viability, produced collapse of membrane potential, but increased levels of reactive oxygen species (ROS) after 48 h incubation. After 24 h with 5 μM treatment elevated levels of ROS, DNA fragmentation and cytochrome c release, accompanied by caspase 9 and caspase 3 activation was noted. Taken together, these results suggest that short-duration exposure (24 or 48 h) to 0.5 μM or 5 μM BDE-209 concentrations diminished HepG2 cell viability due to apoptosis associated with mitochondrial dysfunction.


Toxicology in Vitro | 2017

Exposure to BDE-153 induces autophagy in HepG2 cells

Lilian Cristina Pereira; Filipe V. Duarte; Ana Teresa Varela; Anabela P. Rolo; Carlos M. Palmeira; Daniel Junqueira Dorta

Autophagy is a pro-survival process that occurs under stressful life-threatening conditions. This process clears the cells of damaged organelles, long-lived proteins, and/or misfolded proteins. Under stressful conditions, activation of the autophagic process leads to cell death and acts as a protective mechanism against xenobiotic, which is the most widely accepted mechanism in the literature. Exposure to flame retardants and other pollutants is associated with several diseases, during which cell death and mitochondrial damage takes place. Although a body of research has aimed to understand the toxicity mechanism of flame retardants better, risk evaluation and the consequences of exposure to these toxicants have been poorly described. In this work, we have found that the BDE-153 congener (representant of flame retardants) induces autophagy after 24 and 48h (0.1-25μM). The autophagic process is associated with accumulation of lysosomes, and process triggering is evident from the levels of autophagy-related proteins such as p62 and LC3. Mitophagy (an autophagic process that specifically involves damaged mitochondria) may be involved, as judged from the decreased amount of mitochondrial DNA. Taken together, our results point out that induction of autophagy upon cell should contribute to better understanding of the consequences of human exposure to this class of environmental contaminants.


Toxicology | 2017

An autophagic process is activated in HepG2 cells to mediate BDE-100-induced toxicity

Lilian Cristina Pereira; Filipe V. Duarte; Ana Teresa Varela; Anabela P. Rolo; Carlos M. Palmeira; Daniel Junqueira Dorta

To reduce flammability and meet regulatory requirements, Brominated Flame Retardants (BFRs) are added to a wide variety of consumer products including furniture, textiles, electronics, and construction materials. Exposure to polybrominated phenyl ethers (PBDEs) adversely affects the human health. Bearing in mind that (i) PBDEs are potentially toxic, (ii) the mechanism of PBDE toxicity is unclear, and (iii) the importance of the autophagy to the field of toxicology is overlooked, this study investigates whether an autophagic process is activated in HepG2 cells (human hepatoblastoma cell line) to mediate BDE-100-induced toxicity. HepG2 cells were exposed with BDE-100 at three concentrations (0.1, 5, and 25μM), selected from preliminary toxicity tests, for 24 and 48h. To assess autophagy, immunocytochemistry was performed after exposure of HepG2 cells to BDE-100. Labeling of HepG2 cells with 100nM LysoTracker Red DND-99 aided examination of lysosome distribution. Proteins that are key to the autophagic process (p62 and LC3) were evaluated by western blotting. DNA was isolated and quantified to assess mitochondrial DNA copy number by qPCR on the basis of the number of DNA copies of a mitochondrial encoded gene normalized against a nuclear encoded gene. Conversion of LC3-I to LC3-II increased in HepG2 cells. Pre-addition of 100nM wortmannin decreased the amount of LC3 in the punctuate form and increased nuclear fragmentation (apoptotic feature). HepG2 cells exposed to BDE-100 presented increased staining with the lysosomal dye and had larger LC3 and p62 content after pre-treatment with ammonium chloride. The mitochondrial DNA copy number decreased, which probably constituted an attempt of the cell to manage mitochondrial damage by selective mitochondrial degradation (mitophagy). In conclusion, an autophagic process is activated in HepG2 cells to mediate BDE-100-induced toxicity.


Food Chemistry | 2010

Iron chelating-mediated antioxidant activity of Plectranthus barbatus extract on mitochondria

Marcos A. Maioli; Larissa C. Alves; Andre L. Campanini; Michele C. Lima; Daniel Junqueira Dorta; Milton Groppo; Alberto José Cavalheiro; Carlos Curti; Fábio Erminio Mingatto

Collaboration


Dive into the Daniel Junqueira Dorta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Curti

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge