Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel K. Harris is active.

Publication


Featured researches published by Daniel K. Harris.


Nature Materials | 2013

Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking

Ou Chen; Jing Zhao; Vikash P. Chauhan; Jian Cui; Cliff R. Wong; Daniel K. Harris; He Wei; Hee Sun Han; Dai Fukumura; Rakesh K. Jain; Moungi G. Bawendi

High particle uniformity, high photoluminescence quantum yields, narrow and symmetric emission spectral lineshapes and minimal single-dot emission intermittency (known as blinking) have been recognized as universal requirements for the successful use of colloidal quantum dots in nearly all optical applications. However, synthesizing samples that simultaneously meet all these four criteria has proven challenging. Here, we report the synthesis of such high-quality CdSe-CdS core-shell quantum dots in an optimized process that maintains a slow growth rate of the shell through the use of octanethiol and cadmium oleate as precursors. In contrast with previous observations, single-dot blinking is significantly suppressed with only a relatively thin shell. Furthermore, we demonstrate the elimination of the ensemble luminescence photodarkening that is an intrinsic consequence of quantum dot blinking statistical ageing. Furthermore, the small size and high photoluminescence quantum yields of these novel quantum dots render them superior in vivo imaging agents compared with conventional quantum dots. We anticipate these quantum dots will also result in significant improvement in the performance of quantum dots in other applications such as solid-state lighting and illumination.


Nature Communications | 2014

Magneto-fluorescent core-shell supernanoparticles

Ou Chen; Lars Riedemann; Fred Etoc; Hendrik Herrmann; Mathieu Coppey; Mariya; Christian T. Farrar; Jing Zhao; Oliver T. Bruns; He Wei; Peng Guo; Jian Cui; Russ Jensen; Yue Chen; Daniel K. Harris; Jose M. Cordero; Zhongwu Wang; Alan Jasanoff; Dai Fukumura; Rudolph Reimer; Maxime Dahan; Rakesh K. Jain; Moungi G. Bawendi

Magneto-fluorescent particles have been recognized as an emerging class of materials that exhibit great potential in advanced applications. However, synthesizing such magneto-fluorescent nanomaterials that simultaneously exhibit uniform and tunable sizes, high magnetic content loading, maximized fluorophore coverage at the surface, and a versatile surface functionality has proven challenging. Here we report a simple approach for co-assembling magnetic nanoparticles with fluorescent quantum dots to form colloidal magneto-fluorescent supernanoparticles. Importantly, these supernanoparticles exhibit a superstructure consisting of a close packed magnetic nanoparticle “core” which is fully surrounded by a “shell” of fluorescent quantum dots. A thin layer of silica-coating provides high colloidal stability and biocompatiblity and a versatile surface functionality. We demonstrate that after surface pegylation, these silica-coated magneto-fluorescent supernanoparticles can be magnetically manipulated inside living cells while being optically tracked. Moreover, our silica-coated magneto-fluorescent supernanoparticles can also serve as an in vivo multi-photon and magnetic resonance dual-modal imaging probe.


Nano Letters | 2009

Photocurrent Induced by Nonradiative Energy Transfer from Nanocrystal Quantum Dots to Adjacent Silicon Nanowire Conducting Channels: Toward a New Solar Cell Paradigm

Siyuan Lu; Zachary Lingley; Tetsuya Asano; Daniel K. Harris; Tymon Barwicz; Supratik Guha; A. Madhukar

We report the observation of photocurrent in silicon nanowires induced by nonradiative resonant energy transfer (NRET) from adjacent layers of lead sulfide nanocrystal quantum dots using time-resolved photocurrent measurements. This demonstration supports the feasibility of a new solar cell paradigm (Lu, S.; Madhukar, A. Nano Lett. 2007, 7, 3443-3451) that exploits NRET between efficient photon absorbers and adjacent nanowire/quantum well high-mobility charge transport channels and could offer a viable alternative to the limitations of carrier transport and collection faced by excitonic solar cells.


Nature Chemistry | 2013

Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths

Jian Cui; Andrew P. Beyler; Lisa F. Marshall; Ou Chen; Daniel K. Harris; Darcy D. Wanger; Xavier Brokmann; Moungi G. Bawendi

The spectral linewidth of an ensemble of fluorescent emitters is dictated by the combination of single-emitter linewidths and sample inhomogeneity. For semiconductor nanocrystals, efforts to tune ensemble linewidths for optical applications have focused primarily on eliminating sample inhomogeneities, because conventional single-molecule methods cannot reliably build accurate ensemble-level statistics for single-particle linewidths. Photon-correlation Fourier spectroscopy in solution (S-PCFS) offers a unique approach to investigating single-nanocrystal spectra with large sample statistics and high signal-to-noise ratios, without user selection bias and at fast timescales. With S-PCFS, we directly and quantitatively deconstruct the ensemble linewidth into contributions from the average single-particle linewidth and from sample inhomogeneity. We demonstrate that single-particle linewidths vary significantly from batch to batch and can be synthetically controlled. These findings delineate the synthetic challenges facing underdeveloped nanomaterials such as InP and InAs core-shell particles and introduce new avenues for the synthetic optimization of fluorescent nanoparticles.


Journal of the American Chemical Society | 2011

Synthesis of Cadmium Arsenide Quantum Dots Luminescent in the Infrared

Daniel K. Harris; Peter M. Allen; Hee Sun Han; Brian J. Walker; Jungmin Lee; Moungi G. Bawendi

We present the synthesis of Cd(3)As(2) colloidal quantum dots luminescent from 530 to 2000 nm. Previous reports on quantum dots emitting in the infrared are primarily limited to the lead chalcogenides and indium arsenide. This work expands the availability of high quality infrared emitters.


Journal of the American Chemical Society | 2012

Improved Precursor Chemistry for the Synthesis of III–V Quantum Dots

Daniel K. Harris; Moungi G. Bawendi

The synthesis of III-V quantum dots has been long known to be more challenging than the synthesis of other types of inorganic quantum dots. This is attributed to highly reactive group-V precursors. We synthesized molecules that are suitable for use as group-V precursors and characterized their reactivity using multiple complementary techniques. We show that the size distribution of indium arsenide quantum dots indeed improves with decreased precursor reactivity.


Nature Biomedical Engineering | 2017

Next-generation in vivo optical imaging with short-wave infrared quantum dots

Oliver T. Bruns; Thomas S. Bischof; Daniel K. Harris; Daniel Franke; Yanxiang Shi; Lars Riedemann; Alexander Bartelt; Frank B. Jaworski; Jessica A. Carr; Christopher J. Rowlands; Mark W. Wilson; Ou Chen; He Wei; Gyu Weon Hwang; Daniel M. Montana; Igor Coropceanu; Odin B. Achorn; Jonas Kloepper; Joerg Heeren; Peter T. C. So; Dai Fukumura; Klavs F. Jensen; Rakesh K. Jain; Moungi G. Bawendi

For in vivo imaging, the short-wavelength infrared region (SWIR; 1000–2000 nm) provides several advantages over the visible and near-infrared regions: general lack of autofluorescence, low light absorption by blood and tissue, and reduced scattering. However, the lack of versatile and functional SWIR emitters has prevented the general adoption of SWIR imaging by the biomedical research community. Here, we introduce a class of high-quality SWIR-emissive indium-arsenide-based quantum dots (QDs) that are readily modifiable for various functional imaging applications, and that exhibit narrow and size-tunable emission and a dramatically higher emission quantum yield than previously described SWIR probes. To demonstrate the unprecedented combination of deep penetration, high spatial resolution, multicolor imaging and fast-acquisition-speed afforded by the SWIR QDs, we quantified, in mice, the metabolic turnover rates of lipoproteins in several organs simultaneously and in real time as well as heartbeat and breathing rates in awake and unrestrained animals, and generated detailed three-dimensional quantitative flow maps of the mouse brain vasculature.


Nano Letters | 2016

Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton–Phonon Coupling and the Optimization of Spectral Linewidths

Jian Cui; Andrew P. Beyler; Igor Coropceanu; Liam Cleary; Thomas R. Avila; Yue Chen; Jose M. Cordero; S. Leigh Heathcote; Daniel K. Harris; Ou Chen; Jianshu Cao; Moungi G. Bawendi

The optimization of photoluminescence spectral linewidths in semiconductor nanocrystal preparations involves minimizing both the homogeneous and inhomogeneous contributions to the ensemble spectrum. Although the inhomogeneous contribution can be controlled by eliminating interparticle inhomogeneities, far less is known about how to synthetically control the homogeneous, or single-nanocrystal, spectral linewidth. Here, we use solution photon-correlation Fourier spectroscopy (S-PCFS) to measure how the sample-averaged single-nanocrystal emission linewidth of CdSe core and core/shell nanocrystals change with systematic changes in the size of the cores and the thickness and composition of the shells. We find that the single-nanocrystal linewidth at room temperature is heavily influenced by the nature of the CdSe surface and the epitaxial shell, which have a profound impact on the internal electric fields that affect exciton-phonon coupling. Our results explain the wide variations, both experimental and theoretical, in the magnitude and size dependence in previous reports on exciton-phonon coupling in CdSe nanocrystals. Moreover, our findings offer a general pathway for achieving the narrow spectral linewidths required for many applications of nanocrystals.


Journal of Inorganic Biochemistry | 2001

Calculation of the electronic structure and spectra of model cytochrome P450 compound I

Daniel K. Harris; Gilda H. Loew; Lucy Waskell

The electronic structure and spectra of the oxyferryl (Fe=O) compound I P450 heme species, the transient putative active intermediate of cytochrome P450s, have been calculated employing a full protoporphyrin IX heme model representation. The principal aim of this work was to compare the computed spectra of this species with the observed transient spectra attributed to it. Computations were made using both nonlocal density functional theory (DFT) and semiempirical INDO/CI methods to characterize the electronic structure of the compound I P450 species. Both methods resulted in a similar antiferromagnetic doublet as the ground state with a ferromagnetic quartet excited state partner, slightly higher in energy. The INDO/ROHF/CI semiempirical method was used to calculate the spectrum of the protoporphyrin IX P450 compound I heme species in its lowest energy antiferromagnetic doublet state at the DFT optimized geometry. As a reference, the spectrum of the ferric resting form of the protoporphyrin IX P450 heme species was also calculated. The computed shifts in the Soret and Q bands of compound I relative to the resting state were both in good agreement with the corresponding experimentally observed shifts in the transient spectra of cytochrome P450cam (Biochem. Biophys. Res. Commun. 201 (1994) 1464) and chloroperoxidase (Biochem. Biophys. Res. Commun. 94 (1980) 1123) both ascribed to their common compound I heme site. This consistency provides additional, independent support for the assignment of compound I as the origin of the reported observed transient spectra.


Nature Communications | 2016

Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared

Daniel Franke; Daniel K. Harris; Ou Chen; Oliver T. Bruns; Jessica A. Carr; Mark W. Wilson; Moungi G. Bawendi

With the emergence of applications based on short-wavelength infrared light, indium arsenide quantum dots are promising candidates to address existing shortcomings of other infrared-emissive nanomaterials. However, III–V quantum dots have historically struggled to match the high-quality optical properties of II–VI quantum dots. Here we present an extensive investigation of the kinetics that govern indium arsenide nanocrystal growth. Based on these insights, we design a synthesis of large indium arsenide quantum dots with narrow emission linewidths. We further synthesize indium arsenide-based core-shell-shell nanocrystals with quantum yields up to 82% and improved photo- and long-term storage stability. We then demonstrate non-invasive through-skull fluorescence imaging of the brain vasculature of murine models, and show that our probes exhibit 2–3 orders of magnitude higher quantum yields than commonly employed infrared emitters across the entire infrared camera sensitivity range. We anticipate that these probes will not only enable new biomedical imaging applications, but also improved infrared nanocrystal-LEDs and photon-upconversion technology.

Collaboration


Dive into the Daniel K. Harris's collaboration.

Top Co-Authors

Avatar

Moungi G. Bawendi

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Franke

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jian Cui

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

He Wei

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hee Sun Han

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Igor Coropceanu

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge