Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel K. Howe is active.

Publication


Featured researches published by Daniel K. Howe.


Veterinary Clinics of North America-equine Practice | 1997

Equine Protozoal Myeloencephalitis

Daniel K. Howe; Robert J. MacKay; Stephen Reed

Equine protozoal myeloencephalitis (EPM) can be caused by either of 2 related protozoan parasites, Sarcocystis neurona and Neospora hughesi, although S. neurona is the most frequent etiologic pathogen. Horses are commonly infected, but clinical disease occurs infrequently; the factors influencing disease occurrence are not well understood. Risk factors for the development of EPM include the presence of opossums and prior stressful health-related events. Attempts to reproduce EPM experimentally have reliably induced antibody responses in challenged horses but have not consistently produced acute neurologic disease. Diagnosis and options for treatment of EPM have improved over the past decade.


International Journal for Parasitology | 2002

Redescription of Neospora caninum and its differentiation from related coccidia

J. P. Dubey; Bradd C. Barr; John R. Barta; Inge Bjerkås; Camilla Björkman; B L Blagburn; D D Bowman; D. Buxton; John Ellis; Bruno Gottstein; Andrew Hemphill; Dolores E. Hill; Daniel K. Howe; Mark C. Jenkins; Y. Kobayashi; Břetislav Koudela; Antoinette E. Marsh; Jens G. Mattsson; Milton M. McAllister; David Modrý; Yoshitaka Omata; L D Sibley; C.A. Speer; Alexander J. Trees; Arvid Uggla; Steve J. Upton; Diana J.L. Williams; David S. Lindsay

Neospora caninum is a protozoan parasite of animals, which before 1984 was misidentified as Toxoplasma gondii. Infection by this parasite is a major cause of abortion in cattle and causes paralysis in dogs. Since the original description of N. caninum in 1988, considerable progress has been made in the understanding of its life cycle, biology, genetics and diagnosis. In this article, the authors redescribe the parasite, distinguish it from related coccidia, and provide accession numbers to its type specimens deposited in museums.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Identification of quantitative trait loci controlling acute virulence in Toxoplasma gondii

C. Su; Daniel K. Howe; J. P. Dubey; James W. Ajioka; L. David Sibley

Strains of Toxoplasma gondii can be grouped into three predominant clonal lineages with members of the type I group being uniformly lethal in mice. To elucidate the basis of this extreme virulence, a genetic cross was performed between a highly virulent type I strain (GT-1) and a less-virulent type III strain (CTG), and the phenotypes of resulting progeny were analyzed by genetic linkage mapping. Analysis of independent recombinant progeny identified several quantitative trait loci that contributed to acute virulence. A major quantitative trait locus located on chromosome VII accounted for ≈50% of the virulence phenotype, whereas a minor locus on chromosome IV, linked to the ROP1 gene, accounted for ≈10%. These loci are conserved in other type I strains, indicating that acute virulence is controlled by discrete genes common to the type I lineage.


Journal of Parasitology | 1998

Genotypic analysis of Toxoplasma gondii isolates from pigs.

R. Mondragon; Daniel K. Howe; J. P. Dubey; L. D. Sibley

To determine the prevalence of the 3 primary clonal lineages of Toxoplasma gondii (strain types I, II, and III) in a potential food source of infection for humans, we analyzed 43 isolates of T. gondii that had been collected from pigs at an abattoir in Iowa. Parasites were harvested as in vitro-grown tachyzoites, and their genotypes were determined at the SAG1 and SAG2 loci. On the basis of the allele identified at the SAG2 locus, isolates were grouped into 1 of the 3 primary lineages. Type II strains were by far the most prevalent, accounting for 83.7% of the isolates. The type III genotype was identified in only 16.3% of the isolates. These prevalences differ significantly from a previous sampling of isolates from animals but are similar to the frequencies with which they occur in human disease cases. Similar to the previously characterized strain P89, strains P62 and P105 appeared to have recombinant genotypes. The type I genotype was not identified in the isolates from pigs although these strains have previously been shown to account for approximately 10-25% of toxoplasmosis cases in humans.


Journal of Parasitology | 2001

CHARACTERIZATION OF THE OREGON ISOLATE OF NEOSPORA HUGHESI FROM A HORSE

J. P. Dubey; Susan Liddell; D. Mattson; C. A. Speer; Daniel K. Howe; Mark C. Jenkins

Neospora hughesi was isolated in cell cultures inoculated with homogenate of spinal cord from a horse in Oregon. Tachyzoites of this Oregon isolate of N. hughesi were maintained continuously by cell culture passage and tachyzoites were infective to immunosuppressed mice. Gamma interferon gene knockout (KO) mice injected with tachyzoites developed fatal myocarditis and numerous tachyzoites were seen in lesions. Gerbils (Meriones unguiculatus) inoculated with tachyzoites developed antibodies (≥1:500) as indicated by the Neospora caninum agglutination test but did not develop clinical signs, and Neospora organisms were not demonstrable in their tissues. Tissue cysts were not found in gerbils, nude mice, KO mice, immunosuppressed outbred Swiss Webster mice, or BALB/c mice injected with the Oregon isolate of N. hughesi. Ultrastructurally, tachyzoites of the Oregon isolate from the myocardium of infected KO mice and from cell culture were similar to N. caninum tachyzoites. Western blot analysis using NcSAG1 and NcSRS2 polyclonal and monoclonal antibodies and characterization of the internal transcribed spacer 1 sequences from the equine isolates and different isolates of N. caninum from dogs and cattle indicated that the Oregon isolate of N. hughesi is distinct from N. caninum isolates from cattle and dogs.


Nature Communications | 2016

Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes

Hernan Lorenzi; Asis Khan; Michael S. Behnke; Sivaranjani Namasivayam; Lakshmipuram S. Swapna; Michalis Hadjithomas; Svetlana Karamycheva; Deborah F. Pinney; Brian P. Brunk; James W. Ajioka; Daniel Ajzenberg; John C. Boothroyd; Jon P. Boyle; Marie Laure Dardé; Maria A. Diaz-Miranda; J. P. Dubey; Heather M. Fritz; Solange Maria Gennari; Brian D. Gregory; Kami Kim; Jeroen Saeij; C. Su; Michael W. White; Xing Quan Zhu; Daniel K. Howe; Benjamin M. Rosenthal; Michael E. Grigg; John Parkinson; Liang Liu; Jessica C. Kissinger

Toxoplasma gondii is among the most prevalent parasites worldwide, infecting many wild and domestic animals and causing zoonotic infections in humans. T. gondii differs substantially in its broad distribution from closely related parasites that typically have narrow, specialized host ranges. To elucidate the genetic basis for these differences, we compared the genomes of 62 globally distributed T. gondii isolates to several closely related coccidian parasites. Our findings reveal that tandem amplification and diversification of secretory pathogenesis determinants is the primary feature that distinguishes the closely related genomes of these biologically diverse parasites. We further show that the unusual population structure of T. gondii is characterized by clade-specific inheritance of large conserved haploblocks that are significantly enriched in tandemly clustered secretory pathogenesis determinants. The shared inheritance of these conserved haploblocks, which show a different ancestry than the genome as a whole, may thus influence transmission, host range and pathogenicity.


Journal of Cell Science | 2005

Plastid segregation and cell division in the apicomplexan parasite Sarcocystis neurona

Shipra Vaishnava; David P. Morrison; Rajshekhar Y. Gaji; John M. Murray; Daniel K. Howe; Boris Striepen

Apicomplexan parasites harbor a secondary plastid that is essential to their survival. Several metabolic pathways confined to this organelle have emerged as promising parasite-specific drug targets. The maintenance of the organelle and its genome is an equally valuable target. We have studied the replication and segregation of this important organelle using the parasite Sarcocystis neurona as a cell biological model. This model system makes it possible to differentiate and dissect organellar growth, fission and segregation over time, because of the parasites peculiar mode of cell division. S. neurona undergoes five cycles of chromosomal replication without nuclear division, thus yielding a cell with a 32N nucleus. This nucleus undergoes a sixth replication cycle concurrent with nuclear division and cell budding to give rise to 64 haploid daughter cells. Interestingly, intranuclear spindles persist throughout the cell cycle, thereby providing a potential mechanism to organize chromosomes and organelles in an organism that undergoes dramatic changes in ploidy. The development of the plastid mirrors that of the nucleus, a continuous organelle, which grows throughout the parasites development and shows association with all centrosomes. Pharmacological ablation of the parasites multiple spindles demonstrates their essential role in the organization and faithful segregation of the plastid. By using several molecular markers we have timed organelle fission to the last replication cycle and tied it to daughter cell budding. Finally, plastids were labeled by fluorescent protein expression using a newly developedS. neurona transfection system. With these transgenic parasites we have tested our model in living cells employing laser bleaching experiments.


Infection and Immunity | 2005

Sarcocystis neurona Merozoites Express a Family of Immunogenic Surface Antigens That Are Orthologues of the Toxoplasma gondii Surface Antigens (SAGs) and SAG-Related Sequences

Daniel K. Howe; Rajshekhar Y. Gaji; Meaghan Mroz-Barrett; Marc-Jan Gubbels; Boris Striepen; Shelby Stamper

ABSTRACT Sarcocystis neurona is a member of the Apicomplexa that causes myelitis and encephalitis in horses but normally cycles between the opossum and small mammals. Analysis of an S. neurona expressed sequence tag (EST) database revealed four paralogous proteins that exhibit clear homology to the family of surface antigens (SAGs) and SAG-related sequences of Toxoplasma gondii. The primary peptide sequences of the S. neurona proteins are consistent with the two-domain structure that has been described for the T. gondii SAGs, and each was predicted to have an amino-terminal signal peptide and a carboxyl-terminal glycolipid anchor addition site, suggesting surface localization. All four proteins were confirmed to be membrane associated and displayed on the surface of S. neurona merozoites. Due to their surface localization and homology to T. gondii surface antigens, these S. neurona proteins were designated SnSAG1, SnSAG2, SnSAG3, and SnSAG4. Consistent with their homology, the SnSAGs elicited a robust immune response in infected and immunized animals, and their conserved structure further suggests that the SnSAGs similarly serve as adhesins for attachment to host cells. Whether the S. neurona SAG family is as extensive as the T. gondii SAG family remains unresolved, but it is probable that additional SnSAGs will be revealed as more S. neurona ESTs are generated. The existence of an SnSAG family in S. neurona indicates that expression of multiple related surface antigens is not unique to the ubiquitous organism T. gondii. Instead, the SAG gene family is a common trait that presumably has an essential, conserved function(s).


Clinical and Vaccine Immunology | 2005

Enzyme-Linked Immunosorbent Assays for Detection of Equine Antibodies Specific to Sarcocystis neurona Surface Antigens†

Jessica S. Hoane; Jennifer K. Morrow; William J. Saville; J. P. Dubey; David E. Granstrom; Daniel K. Howe

ABSTRACT Sarcocystis neurona is the primary causative agent of equine protozoal myeloencephalitis (EPM), a common neurologic disease of horses in the Americas. We have developed a set of enzyme-linked immunosorbent assays (ELISAs) based on the four major surface antigens of S. neurona (SnSAGs) to analyze the equine antibody response to S. neurona. The SnSAG ELISAs were optimized and standardized with a sample set of 36 equine sera that had been characterized by Western blotting against total S. neurona parasite antigen, the current gold standard for S. neurona serology. The recombinant SnSAG2 (rSnSAG2) ELISA showed the highest sensitivity and specificity at 95.5% and 92.9%, respectively. In contrast, only 68.2% sensitivity and 71.4% specificity were achieved with the rSnSAG1 ELISA, indicating that this antigen may not be a reliable serological marker for analyzing antibodies against S. neurona in horses. Importantly, the ELISA antigens did not show cross-reactivity with antisera to Sarcocystis fayeri or Neospora hughesi, two other equine parasites. The accuracy and reliability exhibited by the SnSAG ELISAs suggest that these assays will be valuable tools for examining the equine immune response against S. neurona infection, which may help in understanding the pathobiology of this accidental parasite-host interaction. Moreover, with modification and further investigation, the SnSAG ELISAs have potential for use as immunodiagnostic tests to aid in the identification of horses affected by EPM.


Veterinary Parasitology | 2015

An update on Sarcocystis neurona infections in animals and equine protozoal myeloencephalitis (EPM).

J. P. Dubey; Daniel K. Howe; Martin Furr; William J. Saville; Antoinette E. Marsh; Stephen M. Reed; Michael E. Grigg

Equine protozoal myeloencephalitis (EPM) is a serious disease of horses, and its management continues to be a challenge for veterinarians. The protozoan Sarcocystis neurona is most commonly associated with EPM. S. neurona has emerged as a common cause of mortality in marine mammals, especially sea otters (Enhydra lutris). EPM-like illness has also been recorded in several other mammals, including domestic dogs and cats. This paper updates S. neurona and EPM information from the last 15 years on the advances regarding life cycle, molecular biology, epidemiology, clinical signs, diagnosis, treatment and control.

Collaboration


Dive into the Daniel K. Howe's collaboration.

Top Co-Authors

Avatar

J. P. Dubey

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lyons Et

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge