Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Kalman is active.

Publication


Featured researches published by Daniel Kalman.


Journal of Cell Biology | 2003

Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis

Supriya Srinivasan; Fei Wang; Suzana Glavas; Alexander Ott; Fred Hofmann; Klaus Aktories; Daniel Kalman; Henry R. Bourne

Neutrophils exposed to chemoattractants polarize and accumulate polymerized actin at the leading edge. In neutrophil-like HL-60 cells, this asymmetry depends on a positive feedback loop in which accumulation of a membrane lipid, phosphatidylinositol (PI) 3,4,5-trisphosphate (PI[3,4,5]P3), leads to activation of Rac and/or Cdc42, and vice versa. We now report that Rac and Cdc42 play distinct roles in regulating this asymmetry. In the absence of chemoattractant, expression of constitutively active Rac stimulates accumulation at the plasma membrane of actin polymers and of GFP-tagged fluorescent probes for PI(3,4,5)P3 (the PH domain of Akt) and activated Rac (the p21-binding domain of p21-activated kinase). Dominant negative Rac inhibits chemoattractant-stimulated accumulation of actin polymers and membrane translocation of both fluorescent probes and attainment of morphologic polarity. Expression of constitutively active Cdc42 or of two different protein inhibitors of Cdc42 fails to mimic effects of the Rac mutants on actin or PI(3,4,5)P3. Instead, Cdc42 inhibitors prevent cells from maintaining a persistent leading edge and frequently induce formation of multiple, short lived leading edges containing actin polymers, PI(3,4,5)P3, and activated Rac. We conclude that Rac plays a dominant role in the PI(3,4,5)P3-dependent positive feedback loop required for forming a leading edge, whereas location and stability of the leading edge are regulated by Cdc42.


Nature Neuroscience | 2003

PI3 kinase enhancer–Homer complex couples mGluRI to PI3 kinase, preventing neuronal apoptosis

Rong Rong; Jee-Yin Ahn; Honglian Huang; Eiichiro Nagata; Daniel Kalman; Judith A. Kapp; Jiancheng Tu; Paul F. Worley; Solomon H. Snyder; Keqiang Ye

Phosphoinositide 3 kinase enhancer (PIKE) is a recently identified nuclear GTPase that activates nuclear phosphoinositide 3-kinase (PI3 kinase). We have identified, cloned and characterized a new form of PIKE, designated PIKE-L, which, unlike the nuclear PIKE-S, localizes to both the cytoplasm and the nucleus. We demonstrate physiologic binding of PIKE-L to Homer, an adaptor protein known to link metabotropic glutamate receptors to multiple intracellular targets including the inositol 1,4,5-trisphosphate receptor (IP3R). We show that activation of group I metabotropic glutamate receptors (mGluRIs) enhances formation of an mGluRI-Homer-PIKE-L complex, leading to activation of PI3 kinase activity and prevention of neuronal apoptosis. Our findings indicate that this complex mediates the well-known ability of agonists of mGluRI to prevent neuronal apoptosis.


Nature Medicine | 2005

Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases

Patrick Reeves; Bettina Bommarius; Sarah L. Lebeis; Shannon McNulty; Jesper Christensen; Alyson Swimm; Ann Chahroudi; Rahul Chavan; Mark B. Feinberg; Darren R. Veach; William G. Bornmann; Melanie A. Sherman; Daniel Kalman

The Poxviridae family members vaccinia and variola virus enter mammalian cells, replicate outside the nucleus and produce virions that travel to the cell surface along microtubules, fuse with the plasma membrane and egress from infected cells toward apposing cells on actin-filled membranous protrusions. We show that cell-associated enveloped virions (CEV) use Abl- and Src-family tyrosine kinases for actin motility, and that these kinases act in a redundant fashion, perhaps permitting motility in a greater range of cell types. Additionally, release of CEV from the cell requires Abl- but not Src-family tyrosine kinases, and is blocked by STI-571 (Gleevec), an Abl-family kinase inhibitor used to treat chronic myelogenous leukemia in humans. Finally, we show that STI-571 reduces viral dissemination by five orders of magnitude and promotes survival in infected mice, suggesting possible use for this drug in treating smallpox or complications associated with vaccination. This therapeutic approach may prove generally efficacious in treating microbial infections that rely on host tyrosine kinases, and, because the drug targets host but not viral molecules, this strategy is much less likely to engender resistance compared to conventional antimicrobial therapies.


Journal of Immunology | 2007

TLR Signaling Mediated by MyD88 Is Required for a Protective Innate Immune Response by Neutrophils to Citrobacter rodentium

Sarah L. Lebeis; Bettina Bommarius; Charles A. Parkos; Melanie A. Sherman; Daniel Kalman

Enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and Citrobacter rodentium are classified as attaching and effacing pathogens based on their ability to adhere to intestinal epithelium via actin-filled membranous protrusions (pedestals). Infection of mice with C. rodentium causes breach of the colonic epithelial barrier, a vigorous Th1 inflammatory response, and colitis. Ultimately, an adaptive immune response leads to clearance of the bacteria. Whereas much is known about the adaptive response to C. rodentium, the role of the innate immune response remains unclear. In this study, we demonstrate for the first time that the TLR adaptor MyD88 is essential for survival and optimal immunity following infection. MyD88−/− mice suffer from bacteremia, gangrenous mucosal necrosis, severe colitis, and death following infection. Although an adaptive response occurs, MyD88-dependent signaling is necessary for efficient clearance of the pathogen. Based on reciprocal bone marrow transplants in conjunction with assessment of intestinal mucosal pathology, repair, and cytokine production, our findings suggest a model in which TLR signaling in hemopoietic and nonhemopoietic cells mediate three distinct processes: 1) induction of an epithelial repair response that maintains the protective barrier and limits access of bacteria to the lamina propria; 2) production of KC or other chemokines that attract neutrophils and thus facilitate killing of bacteria; and 3) efficient activation of an adaptive response that facilitates Ab-mediated clearance of the infection. Taken together, these experiments provide evidence for a protective role of innate immune signaling in infections caused by attaching and effacing pathogens.


PLOS Pathogens | 2008

RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry.

Cherilyn A. Elwell; Alhaji Ceesay; Jung Hwa Kim; Daniel Kalman; Joanne N. Engel

To elucidate the mechanisms involved in early events in Chlamydia trachomatis infection, we conducted a large scale unbiased RNA interference screen in Drosophila melanogaster S2 cells. This allowed identification of candidate host factors in a simple non-redundant, genetically tractable system. From a library of 7,216 double stranded RNAs (dsRNA), we identified ∼226 host genes, including two tyrosine kinases, Abelson (Abl) kinase and PDGF- and VEGF-receptor related (Pvr), a homolog of the Platelet-derived growth factor receptor (PDGFR). We further examined the role of these two kinases in C. trachomatis binding and internalization into mammalian cells. Both kinases are phosphorylated upon infection and recruited to the site of bacterial attachment, but their roles in the infectious process are distinct. We provide evidence that PDGFRβ may function as a receptor, as inhibition of PDGFRβ by RNA interference or by PDGFRβ neutralizing antibodies significantly reduces bacterial binding, whereas depletion of Abl kinase has no effect on binding. Bacterial internalization can occur through activation of PDGFRβ or through independent activation of Abl kinase, culminating in phosphorylation of the Rac guanine nucleotide exchange factor (GEF), Vav2, and two actin nucleators, WAVE2 and Cortactin. Finally, we show that TARP, a bacterial type III secreted actin nucleator implicated in entry, is a target of Abl kinase. Together, our results demonstrate that PDGFRβ and Abl kinases function redundantly to promote efficient uptake of this obligate intracellular parasite.


Molecular Microbiology | 2005

Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene

Akwasi Anyanful; Jennifer M. Dolan-Livengood; Taiesha Lewis; Seema Sheth; Mark N. DeZalia; Melanie A. Sherman; Lisa Kalman; Guy M. Benian; Daniel Kalman

Pathogenic Escherichia coli, including enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC) are major causes of food and water‐borne disease. We have developed a genetically tractable model of pathogenic E. coli virulence based on our observation that these bacteria paralyse and kill the nematode Caenorhabditis elegans. Paralysis and killing of C. elegans by EPEC did not require direct contact, suggesting that a secreted toxin mediates the effect. Virulence against C. elegans required tryptophan and bacterial tryptophanase, the enzyme catalysing the production of indole and other molecules from tryptophan. Thus, lack of tryptophan in growth media or deletion of tryptophanase gene failed to paralyse or kill C. elegans. While known tryptophan metabolites failed to complement an EPEC tryptophanase mutant when presented extracellularly, complementation was achieved with the enzyme itself expressed either within the pathogen or within a cocultured K12 strains. Thus, an unknown metabolite of tryptophanase, derived from EPEC or from commensal non‐pathogenic strains, appears to directly or indirectly regulate toxin production within EPEC. EPEC strains containing mutations in the locus of enterocyte effacement (LEE), a pathogenicity island required for virulence in humans, also displayed attenuated capacity to paralyse and kill nematodes. Furthermore, tryptophanase activity was required for full activation of the LEE1 promoter, and for efficient formation of actin‐filled membranous protrusions (attaching and effacing lesions) that form on the surface of mammalian epithelial cells following attachment and which depends on LEE genes. Finally, several C. elegans genes, including hif‐1 and egl‐9, rendered C. elegans less susceptible to EPEC when mutated, suggesting their involvement in mediating toxin effects. Other genes including sek‐1, mek‐1, mev‐1, pgp‐1,3 and vhl‐1, rendered C. elegans more susceptible to EPEC effects when mutated, suggesting their involvement in protecting the worms. Moreover we have found that C. elegans genes controlling lifespan (daf‐2, age‐1 and daf‐16), also mediate susceptibility to EPEC. Together, these data suggest that this C. elegans/EPEC system will be valuable in elucidating novel factors relevant to human disease that regulate virulence in the pathogen or susceptibility to infection in the host.


Cell Host & Microbe | 2011

Imatinib-Sensitive Tyrosine Kinases Regulate Mycobacterial Pathogenesis and Represent Therapeutic Targets against Tuberculosis

Ruth J. Napier; Wasiulla Rafi; Mani Cheruvu; Kimberly R. Powell; M. Analise Zaunbrecher; William Bornmann; Padmini Salgame; Thomas M. Shinnick; Daniel Kalman

The lengthy course of treatment with currently used antimycobacterial drugs and the resulting emergence of drug-resistant strains have intensified the need for alternative therapies against Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis. We show that Mtb and Mycobacterium marinum use ABL and related tyrosine kinases for entry and intracellular survival in macrophages. In mice, the ABL family tyrosine kinase inhibitor, imatinib (Gleevec), when administered prophylactically or therapeutically, reduced both the number of granulomatous lesions and bacterial load in infected organs and was also effective against a rifampicin-resistant strain. Further, when coadministered with current first-line drugs, rifampicin or rifabutin, imatinib acted synergistically. These data implicate host tyrosine kinases in entry and intracellular survival of mycobacteria and suggest that imatinib may have therapeutic efficacy against Mtb. Because imatinib targets host, it is less likely to engender resistance compared to conventional antibiotics and may decrease the development of resistance against coadministered drugs.


Infection and Immunity | 2009

Interleukin-1 Receptor Signaling Protects Mice from Lethal Intestinal Damage Caused by the Attaching and Effacing Pathogen Citrobacter rodentium

Sarah L. Lebeis; Kimberly R. Powell; Didier Merlin; Melanie A. Sherman; Daniel Kalman

ABSTRACT Enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and Citrobacter rodentium are classified as attaching and effacing pathogens based on their ability to adhere to the intestinal epithelium via actin-filled membranous protrusions (pedestals). Infection of mice with C. rodentium causes a breach of the intestinal epithelial barrier, leading to colitis via a vigorous inflammatory response resulting in diarrhea and a protective antibody response that clears the pathogen. Here we show that interleukin-1 receptor (IL-1R) signaling protects mice following infection with C. rodentium. Upon infection, mice lacking the type I IL-1R exhibit increased mortality together with severe colitis characterized by intramural colonic bleeding and intestinal damage including gangrenous mucosal necrosis, phenotypes also evident in MyD88-deficient mice. However, unlike MyD88−/− mice, IL-1R−/− mice do not exhibit increased pathogen loads in the colon, delays in the recruitment of innate immune cells such as neutrophils, or defects in the capacity to replace damaged enterocytes. Further, we demonstrate that IL-1R−/− mice have an increased predisposition to intestinal damage caused by C. rodentium but not to that caused by chemical irritants, such as dextran sodium sulfate. Together, these data suggest that IL-1R signaling regulates the susceptibility of the intestinal epithelia to damage caused by C. rodentium.


Journal of Cell Science | 2005

Actin and non-muscle myosin II facilitate apical exocytosis of tear proteins in rabbit lacrimal acinar epithelial cells

Galina V. Jerdeva; Kaijin Wu; Francie A. Yarber; Christopher J. Rhodes; Daniel Kalman; Joel E. Schechter; Sarah F. Hamm-Alvarez

The acinar epithelial cells of the lacrimal gland exocytose the contents of mature secretory vesicles containing tear proteins at their apical membranes in response to secretagogues. Here we use time-lapse confocal fluorescence microscopy and fluorescence recovery after photobleaching to investigate the changes in actin filaments located beneath the apical membrane during exocytosis evoked by the muscarinic agonist, carbachol (100 μM). Time-lapse confocal fluorescence microscopy of apical actin filaments in reconstituted rabbit lacrimal acini transduced with replication-deficient adenovirus containing GFP-actin revealed a relatively quiescent apical actin array in resting acini. Carbachol markedly increased apical actin filament turnover and also promoted transient actin assembly around apparent fusion intermediates. Fluorescence recovery after photobleaching measurements revealed significant (P≤0.05) increases and decreases, respectively, in mobile fraction (Mf) and turnover times (t½) for apical actin filaments in carbachol-stimulated acini relative to untreated acini. The myosin inhibitors, 2,3-butanedione monoxime (BDM, 10 mM, 15 minutes) and ML-7 (40 μM, 15 minutes), significantly decreased carbachol-stimulated secretion of bulk protein and the exogenous secretory vesicle marker, syncollin-GFP; these agents also promoted accumulation of actin-coated structures which were enriched, in transduced acini, in syncollin-GFP, confirming their identity as fusion intermediates. Actin-coated fusion intermediates were sized consistent with incorporation of multiple rather than single secretory vesicles; moreover, BDM and ML-7 caused a shift towards formation of multiple secretory vesicle aggregates while significantly increasing the diameter of actin-coated fusion intermediates. Our findings suggest that the increased turnover of apical actin filaments and the interaction of actin with non-muscle myosin II assembled around aggregates of secretory vesicles facilitate exocytosis in lacrimal acinar epithelial cells.


Infection and Immunity | 2009

The RNA Binding Protein CsrA Is a Pleiotropic Regulator of the Locus of Enterocyte Effacement Pathogenicity Island of Enteropathogenic Escherichia coli

Shantanu Bhatt; Adrianne N. Edwards; Hang Thi Thu Nguyen; Didier Merlin; Tony Romeo; Daniel Kalman

ABSTRACT The attaching and effacing (A/E) pathogen enteropathogenic Escherichia coli (EPEC) forms characteristic actin-filled membranous protrusions upon infection of host cells termed pedestals. Here we examine the role of the RNA binding protein CsrA in the expression of virulence genes and proteins that are necessary for pedestal formation. The csrA mutant was defective in forming actin pedestals on epithelial cells and in disrupting transepithelial resistance across polarized epithelial cells. Consistent with reduced pedestal formation, secretion of the translocators EspA, EspB, and EspD and the effector Tir was substantially reduced in the csrA mutant. Purified CsrA specifically bound to the sepL espADB mRNA leader, and the corresponding transcript levels were reduced in the csrA mutant. In contrast, Tir synthesis was unaffected in the csrA mutant. Reduced secretion of Tir appeared to be in part due to decreased synthesis of EscD, an inner membrane architectural protein of the type III secretion system (TTSS) and EscF, a protein that forms the protruding needle complex of the TTSS. These effects were not mediated through the locus of enterocyte effacement (LEE) transcriptional regulator GrlA or Ler. In contrast to the csrA mutant, multicopy expression of csrA repressed transcription from LEE1, grlRA, LEE2, LEE5, escD, and LEE4, an effect mediated by GrlA and Ler. Consistent with its role in other organisms, CsrA also regulated flagellar motility and glycogen levels. Our findings suggest that CsrA governs virulence factor expression in an A/E pathogen by regulating mRNAs encoding translocators, effectors, or transcription factors.

Collaboration


Dive into the Daniel Kalman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William G. Bornmann

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Didier Merlin

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

William Bornmann

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge