Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Kerschensteiner is active.

Publication


Featured researches published by Daniel Kerschensteiner.


Nature | 2009

Neurotransmission selectively regulates synapse formation in parallel circuits in vivo.

Daniel Kerschensteiner; Josh Morgan; Edward Parker; Renate M. Lewis; Rachel Wong

Activity is thought to guide the patterning of synaptic connections in the developing nervous system. Specifically, differences in the activity of converging inputs are thought to cause the elimination of synapses from less active inputs and increase connectivity with more active inputs. Here we present findings that challenge the generality of this notion and offer a new view of the role of activity in synapse development. To imbalance neurotransmission from different sets of inputs in vivo, we generated transgenic mice in which ON but not OFF types of bipolar cells in the retina express tetanus toxin (TeNT). During development, retinal ganglion cells (RGCs) select between ON and OFF bipolar cell inputs (ON or OFF RGCs) or establish a similar number of synapses with both on separate dendritic arborizations (ON-OFF RGCs). In TeNT retinas, ON RGCs correctly selected the silenced ON bipolar cell inputs over the transmitting OFF bipolar cells, but were connected with them through fewer synapses at maturity. Time-lapse imaging revealed that this was caused by a reduced rate of synapse formation rather than an increase in synapse elimination. Similarly, TeNT-expressing ON bipolar cell axons generated fewer presynaptic active zones. The remaining active zones often recruited multiple, instead of single, synaptic ribbons. ON-OFF RGCs in TeNT mice maintained convergence of ON and OFF bipolar cells inputs and had fewer synapses on their ON arbor without changes to OFF arbor synapses. Our results reveal an unexpected and remarkably selective role for activity in circuit development in vivo, regulating synapse formation but not elimination, affecting synapse number but not dendritic or axonal patterning, and mediating independently the refinement of connections from parallel (ON and OFF) processing streams even where they converge onto the same postsynaptic cell.


The Neuroscientist | 2014

Spontaneous Network Activity and Synaptic Development

Daniel Kerschensteiner

Throughout development, the nervous system produces patterned spontaneous activity. Research over the past two decades has revealed a core group of mechanisms that mediate spontaneous activity in diverse circuits. Many circuits engage several of these mechanisms sequentially to accommodate developmental changes in connectivity. In addition to shared mechanisms, activity propagates through developing circuits and neuronal pathways (i.e., linked circuits in different brain areas) in stereotypic patterns. Increasing evidence suggests that spontaneous network activity shapes synaptic development in vivo. Variations in activity-dependent plasticity may explain how similar mechanisms and patterns of activity can be employed to establish diverse circuits. Here, I will review common mechanisms and patterns of spontaneous activity in emerging neural networks and discuss recent insights into their contribution to synaptic development.


The Journal of Neuroscience | 2015

Genetically Identified Suppressed-by-Contrast Retinal Ganglion Cells Reliably Signal Self-Generated Visual Stimuli

Nai-Wen Tien; James T. Pearson; X Charles R. Heller; X Jay Demas; Daniel Kerschensteiner

Spike trains of retinal ganglion cells (RGCs) are the sole source of visual information to the brain; and understanding how the ∼20 RGC types in mammalian retinae respond to diverse visual features and events is fundamental to understanding vision. Suppressed-by-contrast (SbC) RGCs stand apart from all other RGC types in that they reduce rather than increase firing rates in response to light increments (ON) and decrements (OFF). Here, we genetically identify and morphologically characterize SbC-RGCs in mice, and target them for patch-clamp recordings under two-photon guidance. We find that strong ON inhibition (glycine > GABA) outweighs weak ON excitation, and that inhibition (glycine > GABA) coincides with decreases in excitation at light OFF. These input patterns explain the suppressive spike responses of SbC-RGCs, which are observed in dim and bright light conditions. Inhibition to SbC-RGC is driven by rectified receptive field subunits, leading us to hypothesize that SbC-RGCs could signal pattern-independent changes in the retinal image. Indeed, we find that shifts of random textures matching saccade-like eye movements in mice elicit robust inhibitory inputs and suppress spiking of SbC-RGCs over a wide range of texture contrasts and spatial frequencies. Similarly, stimuli based on kinematic analyses of mouse blinking consistently suppress SbC-RGC spiking. Receiver operating characteristics show that SbC-RGCs are reliable indicators of self-generated visual stimuli that may contribute to central processing of blinks and saccades. SIGNIFICANCE STATEMENT This study genetically identifies and morphologically characterizes suppressed-by-contrast retinal ganglion cells (SbC-RGCs) in mice. Targeted patch-clamp recordings from SbC-RGCs under two-photon guidance elucidate the synaptic mechanisms mediating spike suppression to contrast steps, and reveal that SbC-RGCs respond reliably to stimuli mimicking saccade-like eye movements and blinks. The similarity of responses to saccade-like eye movements and blinks suggests that SbC-RGCs may provide a unified signal for self-generated visual stimuli.


Journal of Biomedical Optics | 2014

Integrated photoacoustic, confocal, and two-photon microscope

Bin Rao; Florentina Soto; Daniel Kerschensteiner; Lihong V. Wang

Abstract. The invention of green fluorescent protein and other molecular fluorescent probes has promoted applications of confocal and two-photon fluorescence microscopy in biology and medicine. However, exogenous fluorescence contrast agents may affect cellular structure and function, and fluorescence microscopy cannot image nonfluorescent chromophores. We overcome this limitation by integrating optical-resolution photoacoustic microscopy into a modern Olympus IX81 confocal, two-photon, fluorescence microscope setup to provide complementary, label-free, optical absorption contrast. Automatically coregistered images can be generated from the same sample. Imaging applications in ophthalmology, developmental biology, and plant science are demonstrated. For the first time, in a familiar microscopic fluorescence imaging setting, this trimodality microscope provides a platform for future biological and medical discoveries.


eLife | 2016

Dendritic mitochondria reach stable positions during circuit development

Michelle C Faits; Chunmeng Zhang; Florentina Soto; Daniel Kerschensteiner

Mitochondria move throughout neuronal dendrites and localize to sites of energy demand. The prevailing view of dendritic mitochondria as highly motile organelles whose distribution is continually adjusted by neuronal activity via Ca2+-dependent arrests is based on observations in cultured neurons exposed to artificial stimuli. Here, we analyze the movements of mitochondria in ganglion cell dendrites in the intact retina. We find that whereas during development 30% of mitochondria are motile at any time, as dendrites mature, mitochondria all but stop moving and localize stably to synapses and branch points. Neither spontaneous nor sensory-evoked activity and Ca2+ transients alter motility of dendritic mitochondria; and pathological hyperactivity in a mouse model of retinal degeneration elevates rather than reduces motility. Thus, our findings indicate that dendritic mitochondria reach stable positions during a critical developmental period of high motility, and challenge current views about the role of activity in regulating mitochondrial transport in dendrites. DOI: http://dx.doi.org/10.7554/eLife.11583.001


Journal of Neurophysiology | 2015

Ambient illumination switches contrast preference of specific retinal processing streams

James T. Pearson; Daniel Kerschensteiner

Contrast, a fundamental feature of visual scenes, is encoded in a distributed manner by ∼ 20 retinal ganglion cell (RGC) types, which stream visual information to the brain. RGC types respond preferentially to positive (ON(pref)) or negative (OFF(pref)) contrast and differ in their sensitivity to preferred contrast and responsiveness to nonpreferred stimuli. Vision operates over an enormous range of mean light levels. The influence of ambient illumination on contrast encoding across RGC types is not well understood. Here, we used large-scale multielectrode array recordings to characterize responses of mouse RGCs under lighting conditions spanning five orders in brightness magnitude. We identify three functional RGC types that switch contrast preference in a luminance-dependent manner (Sw1-, Sw2-, and Sw3-RGCs). As ambient illumination increases, Sw1- and Sw2-RGCs shift from ON(pref) to OFF(pref) and Sw3-RGCs from OFF(pref) to ON(pref). In all cases, transitions in contrast preference are reversible and track light levels. By mapping spatiotemporal receptive fields at different mean light levels, we find that changes in input from ON and OFF pathways in receptive field centers underlie shifts in contrast preference. Sw2-RGCs exhibit direction-selective responses to motion stimuli. Despite changing contrast preference, direction selectivity of Sw2-RGCs and other RGCs as well as orientation-selective responses of RGCs remain stable across light levels.


Current Biology | 2014

Retrograde Plasticity and Differential Competition of Bipolar Cell Dendrites and Axons in the Developing Retina

Robert E. Johnson; Daniel Kerschensteiner

Most neurons function in the context of pathways that process and propagate information through a series of stages, e.g., from the sensory periphery to cerebral cortex. Because activity at each stage of a neural pathway depends on connectivity at the preceding one, we hypothesized that during development, axonal output of a neuron may regulate synaptic development of its dendrites (i.e., retrograde plasticity). Within pathways, neurons often receive input from multiple partners and provide output to targets shared with other neurons (i.e., convergence). Converging axons can intermingle or occupy separate territories on target dendrites. Activity-dependent competition has been shown to bias target innervation by overlapping axons in several systems. By contrast, whether territorial axons or dendrites compete for targets and inputs, respectively, has not been tested. Here, we generate transgenic mice in which glutamate release from specific sets of retinal bipolar cells (BCs) is suppressed. We find that dendrites of silenced BCs recruit fewer inputs when their neighbors are active and that dendrites of active BCs recruit more inputs when their neighbors are silenced than either active or silenced BCs with equal neighbors. By contrast, axons of silenced BCs form fewer synapses with their targets, irrespective of the activity of their neighbors. These findings reveal that retrograde plasticity guides BC dendritic development in vivo and demonstrate that dendrites, but not territorial axons, in a convergent neural pathway engage in activity-dependent competition. We propose that at a population level, retrograde plasticity serves to maximize functional representation of inputs.


Frontiers in Cellular Neuroscience | 2015

Synaptic remodeling of neuronal circuits in early retinal degeneration

Florentina Soto; Daniel Kerschensteiner

Photoreceptor degenerations are a major cause of blindness and among the most common forms of neurodegeneration in humans. Studies of mouse models revealed that synaptic dysfunction often precedes photoreceptor degeneration, and that abnormal synaptic input from photoreceptors to bipolar cells causes circuits in the inner retina to become hyperactive. Here, we provide a brief overview of frequently used mouse models of photoreceptor degenerations. We then discuss insights into circuit remodeling triggered by early synaptic dysfunction in the outer and hyperactivity in the inner retina. We discuss these insights in the context of other experimental manipulations of synaptic function and activity. Knowledge of the plasticity and early remodeling of retinal circuits will be critical for the design of successful vision rescue strategies.


CSH Protocols | 2011

Shooting DNA, dyes, or indicators into tissue slices using the gene gun.

Josh Morgan; Daniel Kerschensteiner

Imaging and reconstruction of developing neurons require cells that are labeled in a way that distinguishes them from their neighbors. This can be achieved with ballistic labeling, which refers to the delivery of a cell label by means of carrier particles (tungsten or gold) propelled from a pressurized gun. Ballistic delivery can reach many dispersed cells in one shot and can deploy a wide variety of cell markers to neurons in diverse preparations. The three most commonly used types of ballistic labels are carbocyanine dyes, dextran-conjugated fluorescent markers, and DNA plasmids. This article describes a protocol for using a Helios Gene Gun (Bio-Rad Laboratories) to inject coated particles into cells located near the surface of a tissue preparation. Shooting particles coated with carbocyanine dyes or dextran-conjugated fluorescent markers requires that a filter be placed between the gene gun and the target tissue. The filter prevents unbound dye clumps from reaching the tissue and attenuates the pressure wave reaching the tissue. DNA-coated particles can be shot without a filter if the target cells are located near enough to the surface (<20 μm deep) for the particles to penetrate using low helium pressures (35-40 psi).


Journal of Neurophysiology | 2015

Morphology and function of three VIP-expressing amacrine cell types in the mouse retina

Alejandro Akrouh; Daniel Kerschensteiner

Amacrine cells (ACs) are the most diverse class of neurons in the retina. The variety of signals provided by ACs allows the retina to encode a wide range of visual features. Of the 30-50 AC types in mammalian species, few have been studied in detail. Here, we combine genetic and viral strategies to identify and to characterize morphologically three vasoactive intestinal polypeptide-expressing GABAergic AC types (VIP1-, VIP2-, and VIP3-ACs) in mice. Somata of VIP1- and VIP2-ACs reside in the inner nuclear layer and somata of VIP3-ACs in the ganglion cell layer, and they show asymmetric distributions along the dorsoventral axis of the retina. Neurite arbors of VIP-ACs differ in size (VIP1-ACs ≈ VIP3-ACs > VIP2-ACs) and stratify in distinct sublaminae of the inner plexiform layer. To analyze light responses and underlying synaptic inputs, we target VIP-ACs under 2-photon guidance for patch-clamp recordings. VIP1-ACs depolarize strongly to light increments (ON) over a wide range of stimulus sizes but show size-selective responses to light decrements (OFF), depolarizing to small and hyperpolarizing to large stimuli. The switch in polarity of OFF responses is caused by pre- and postsynaptic surround inhibition. VIP2- and VIP3-ACs both show small depolarizations to ON stimuli and large hyperpolarizations to OFF stimuli but differ in their spatial response profiles. Depolarizations are caused by ON excitation outweighing ON inhibition, whereas hyperpolarizations result from pre- and postsynaptic OFF-ON crossover inhibition. VIP1-, VIP2-, and VIP3-ACs thus differ in response polarity and spatial tuning and contribute to the diversity of inhibitory and neuromodulatory signals in the retina.

Collaboration


Dive into the Daniel Kerschensteiner's collaboration.

Top Co-Authors

Avatar

Florentina Soto

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Josh Morgan

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Nai-Wen Tien

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Rachel Wong

University of Washington

View shared research outputs
Top Co-Authors

Avatar

James T. Pearson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jen-Chun Hsiang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Keith P. Johnson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Tahnbee Kim

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Hongkui Zeng

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge