Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel L. Altschuler is active.

Publication


Featured researches published by Daniel L. Altschuler.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer

Lindsey M. Kelly; Guillermo Barila; Pengyuan Liu; Viktoria N. Evdokimova; Sumita Trivedi; Federica Panebianco; Manoj Gandhi; Sally E. Carty; Steven P. Hodak; Jian-Hua Luo; Sanja Dacic; Yan P. Yu; Marina N. Nikiforova; Robert L. Ferris; Daniel L. Altschuler; Yuri E. Nikiforov

Significance Thyroid cancer is common and has an excellent outcome in many cases, although a proportion of these tumors have a progressive clinical course and high mortality. Using whole-transcriptome (RNA-sequencing) analysis, we discovered previously unknown genetic events, anaplastic lymphoma kinase (ALK) gene fusions, in thyroid cancer and demonstrate that they occur more often in aggressive cancers. The most common fusion identified in these tumors involved the striatin (STRN) gene, and we show that it is transforming and tumorigenic in vivo. Finally, we demonstrate that the kinase activity of STRN-ALK can be blocked by ALK inhibitors, raising a possibility that ALK fusions may be used as a therapeutic target for patients with the most aggressive and frequently lethal forms of thyroid cancer. Thyroid cancer is a common endocrine malignancy that encompasses well-differentiated as well as dedifferentiated cancer types. The latter tumors have high mortality and lack effective therapies. Using a paired-end RNA-sequencing approach, we report the discovery of rearrangements involving the anaplastic lymphoma kinase (ALK) gene in thyroid cancer. The most common of these involves a fusion between ALK and the striatin (STRN) gene, which is the result of a complex rearrangement involving the short arm of chromosome 2. STRN-ALK leads to constitutive activation of ALK kinase via dimerization mediated by the coiled-coil domain of STRN and to a kinase-dependent, thyroid-stimulating hormone–independent proliferation of thyroid cells. Moreover, expression of STRN-ALK transforms cells in vitro and induces tumor formation in nude mice. The kinase activity of STRN-ALK and the ALK-induced cell growth can be blocked by the ALK inhibitors crizotinib and TAE684. In addition to well-differentiated papillary cancer, STRN-ALK was found with a higher prevalence in poorly differentiated and anaplastic thyroid cancers, and it did not overlap with other known driver mutations in these tumors. Our data demonstrate that STRN-ALK fusion occurs in a subset of patients with highly aggressive types of thyroid cancer and provide initial evidence suggesting that it may represent a therapeutic target for these patients.


Cancer Research | 2010

Downregulation of Rap1GAP through Epigenetic Silencing and Loss of Heterozygosity Promotes Invasion and Progression of Thyroid Tumors

Hui Zuo; Manoj Gandhi; Martin M. Edreira; Daniel Hochbaum; Vishwajit L Nimgaonkar; Ping Zhang; James DiPaola; Viktoria N. Evdokimova; Daniel L. Altschuler; Yuri E. Nikiforov

Thyroid cancer is the most common type of endocrine malignancy, encompassing tumors with various levels of invasive growth and aggressiveness. Rap1GAP, a Rap1 GTPase-activating protein, inhibits the RAS superfamily protein Rap1 by facilitating hydrolysis of GTP to GDP. In this study, we analyzed 197 thyroid tumor samples and showed that Rap1GAP was frequently lost or downregulated in various types of tumors, particularly in the most invasive and aggressive forms of thyroid cancer. The downregulation was due to promoter hypermethylation and/or loss of heterozygosity, found in the majority of thyroid tumors. Treatment with demethylating agent 5-aza-deoxycytidine and/or histone deacetylation inhibitor trichostatin A induced gene reexpression in thyroid cells. A genetic polymorphism, Y609C, was seen in 7% of thyroid tumors but was not related to gene downregulation. Loss of Rap1GAP expression correlated with tumor invasiveness but not with specific mutations activating the mitogen-activated protein kinase pathway. Rap1GAP downregulation was required in vitro for cell migration and Matrigel invasion. Recovery of Rap1GAP expression inhibited thyroid cell proliferation and colony formation. Overall, our findings indicate that epigenetic or genetic loss of Rap1GAP is very common in thyroid cancer, where these events are sufficient to promote cell proliferation and invasion.


Journal of Biological Chemistry | 2008

Epac, in Synergy with cAMP-dependent Protein Kinase (PKA), Is Required for cAMP-mediated Mitogenesis

Daniel Hochbaum; Kyoungja Hong; Guillermo Barila; Fernando Ribeiro-Neto; Daniel L. Altschuler

cAMP stimulates proliferation in many cell types. For many years, cAMP-dependent protein kinase (PKA) represented the only known cAMP effector. PKA, however, does not fully mimic the action of cAMP, indicating the existence of a PKA-independent component. Since cAMP-mediated activation of the G-protein Rap1 and its phosphorylation by PKA are strictly required for the effects of cAMP on mitogenesis, we hypothesized that the Rap1 activator Epac might represent the PKA-independent factor. Here we report that Epac acts synergistically with PKA in cAMP-mediated mitogenesis. We have generated a new dominant negative Epac mutant that revealed that activation of Epac is required for thyroid-stimulating hormone or cAMP stimulation of DNA synthesis. We demonstrate that Epacs action on cAMP-mediated activation of Rap1 and cAMP-mediated mitogenesis depends on the subcellular localization of Epac via its DEP domain. Disruption of the DEP-dependent subcellular targeting of Epac abolished cAMP-Epac-mediated Rap1 activation and thyroid-stimulating hormone-mediated cell proliferation, indicating that an Epac-Rap-PKA signaling unit is critical for the mitogenic action of cAMP.


Journal of Biological Chemistry | 2002

cAMP Inhibition of Akt Is Mediated by Activated and Phosphorylated Rap1b

Liguang Lou; Julie Urbani; Fernando Ribeiro-Neto; Daniel L. Altschuler

Rap1b has been implicated in the transduction of the cAMP mitogenic signal. Rap1b is phosphorylated and activated by cAMP, and its expression in cells where cAMP is mitogenic leads to an increase in G1/S phase entry and tumor formation. The PCCL3 thyroid follicular cells represent a differentiated and physiologically relevant system that requires thyrotropin (TSH), acting via cAMP, for a full mitogenic response. In this model system, cAMP stimulation of DNA synthesis requires activation and phosphorylation of Rap1b by the cAMP-dependent protein kinase A (PKA). This scenario presents the challenge of identifying biochemical processes involved in the phosphorylation-dependent Rap1b mitogenic action. In thyroid cells, Akt has been implicated in the stimulation of cell proliferation by TSH and cAMP. However, the mechanism(s) by which cAMP regulates Akt activity remains unclear. In this study we show that in PCCL3 cells 1) TSH inhibits Akt activity via cAMP and PKA; 2) Rap1b is required for cAMP inhibition of Akt; and 3) transduction of the cAMP signal into Akt requires activation as well as phosphorylation of Rap1b by PKA.


Proceedings of the National Academy of Sciences of the United States of America | 2002

On the mitogenic properties of Rap1b: cAMP-induced G1/S entry requires activated and phosphorylated Rap1b

Fernando Ribeiro-Neto; Julie Urbani; Nicolas Lemée; Liguang Lou; Daniel L. Altschuler

We have shown that the small GTPase Rap1b, a protein known to antagonize the mitogenic and transforming activity of Ras, is endowed with both mitogenic and tumorigenic properties. Rap1b can be activated by cAMP, an intracellular message known to either stimulate or inhibit cell proliferation. The oncogenic property of Rap1b was revealed in a model system in which cAMP stimulates cell proliferation and was linked to Raps ability to promote S phase entry. We have now tested the significance of the mitogenic action of Rap1b in a physiologically relevant model, the differentiated thyroid follicular cells, a system that requires thyroid-stimulating hormone (TSH), acting via cAMP, to mediate a full mitogenic response. Here we report that cAMP-dependent hormonal stimulation of DNA synthesis requires Rap1b in a manner dependent on its phosphorylation by protein kinase A.


Journal of Biological Chemistry | 2003

Activation of JNK by EPAC is independent of its activity as a Rap guanine nucleotide exchanger

Daniel Hochbaum; Tamara Tanos; Fernando Ribeiro-Neto; Daniel L. Altschuler; Omar A. Coso

Guanine nucleotide exchange factors (GEFs) and their associated GTP-binding proteins (G-proteins) are key regulatory elements in the signal transduction machinery that relays information from the extracellular environment into specific intracellular responses. Among them, the MAPK cascades represent ubiquitous downstream effector pathways. We have previously described that, analogous to the Ras-dependent activation of the Erk-1/2 pathway, members of the Rho family of small G-proteins activate the JNK cascade when GTP is loaded by their corresponding GEFs. Searching for novel regulators of JNK activity we have identified Epac (exchange protein activated by cAMP) as a strong activator of JNK-1. Epac is a member of a growing family of GEFs that specifically display exchange activity on the Rap subfamily of Ras small G-proteins. We report here that while Epac activates the JNK severalfold, a constitutively active (G12V) mutant of Rap1b does not, suggesting that Rap-GTP is not sufficient to transduce Epac-dependent JNK activation. Moreover, Epac signaling to the JNKs was not blocked by inactivation of endogenous Rap, suggesting that Rap activation is not necessary for this response. Consistent with these observations, domain deletion mutant analysis shows that the catalytic GEF domain is dispensable for Epac-mediated activation of JNK. These studies identified a region overlapping the Ras exchange motif domain as critical for JNK activation. Consistent with this, an isolated Ras exchange motif domain from Epac is sufficient to activate JNK. We conclude that Epac signals to the JNK cascade through a new mechanism that does not involve its canonical catalytic action, i.e. Rap-specific GDP/GTP exchange. This represents not only a novel way to activate the JNKs but also a yet undescribed mechanism of downstream signaling by Epac.


Journal of Biological Chemistry | 2008

A Novel Epac-Rap-PP2A Signaling Module Controls cAMP-dependent Akt Regulation

Kyoungja Hong; Liguang Lou; Sandhya Gupta; Fernando Ribeiro-Neto; Daniel L. Altschuler

Rap1b has been implicated in the transduction of the cAMP mitogenic signal. It is phosphorylated and activated by cAMP, and its expression in models where cAMP is mitogenic leads to proliferation and tumorigenesis. Akt is a likely downstream effector of cAMP-Rap1 action. cAMP elevation induced a rapid and transient Akt inhibition that required activated and phosphorylated Rap1b. However, the mechanism(s) by which cAMP-Rap regulates Akt remains unclear. Here we show that (i) upstream regulators, PIK and PDK1, are not the target(s) of the cAMP inhibitory action; (ii) constitutively active Akt and calyculin A-stimulated Akt are resistant to cAMP inhibition, suggesting the action of a phosphatase; (iii) cAMP increases the rate of Akt dephosphorylation, directly implicating an Akt-phosphatase; (iv) Epac- and protein kinase A (PKA)-specific analogs synergistically inhibit Akt, indicating the involvement of both cAMP-dependent effector pathways; (v) H89 and dominant negative Epac 279E block cAMP-inhibitory action; (vi) Epac associates in a complex with Akt and PP2A, and the associated-phosphatase activity is positively modulated by cAMP in a PKA- and Rap1-dependent manner; (vii) like its action on Akt inhibition, PKA- and Epac-specific analogs synergistically activate Epac-associated PP2A; and (viii) dominant negative PP2A blocks cAMP-inhibitory action. Thus, we uncovered a novel cAMP-Epac/PKA-Rap1b-PP2A signaling module involved in Akt regulation that may represent a physiological event in the process of cAMP stimulation of thyroid mitogenesis.


Development | 2015

Revising the embryonic origin of thyroid C cells in mice and humans

Ellen Johansson; Louise Andersson; Jessica Örnros; Therese Carlsson; Camilla Ingeson-Carlsson; Shawn Liang; Jakob Dahlberg; Svante Jansson; Luca Parrillo; Pietro Zoppoli; Guillermo Barila; Daniel L. Altschuler; Daniela Padula; Heiko Lickert; Henrik Fagman; Mikael Nilsson

Current understanding infers a neural crest origin of thyroid C cells, the major source of calcitonin in mammals and ancestors to neuroendocrine thyroid tumors. The concept is primarily based on investigations in quail–chick chimeras involving fate mapping of neural crest cells to the ultimobranchial glands that regulate Ca2+ homeostasis in birds, reptiles, amphibians and fishes, but whether mammalian C cell development involves a homologous ontogenetic trajectory has not been experimentally verified. With lineage tracing, we now provide direct evidence that Sox17+ anterior endoderm is the only source of differentiated C cells and their progenitors in mice. Like many gut endoderm derivatives, embryonic C cells were found to coexpress pioneer factors forkhead box (Fox) a1 and Foxa2 before neuroendocrine differentiation takes place. In the ultimobranchial body epithelium emerging from pharyngeal pouch endoderm in early organogenesis, differential Foxa1/Foxa2 expression distinguished two spatially separated pools of C cell precursors with different growth properties. A similar expression pattern was recapitulated in medullary thyroid carcinoma cells in vivo, consistent with a growth-promoting role of Foxa1. In contrast to embryonic precursor cells, C cell-derived tumor cells invading the stromal compartment downregulated Foxa2, foregoing epithelial-to-mesenchymal transition designated by loss of E-cadherin; both Foxa2 and E-cadherin were re-expressed at metastatic sites. These findings revise mammalian C cell ontogeny, expand the neuroendocrine repertoire of endoderm and redefine the boundaries of neural crest diversification. The data further underpin distinct functions of Foxa1 and Foxa2 in both embryonic and tumor development. Highlighted article: Mouse thyroid C cell precursors arise in foregut endoderm, and not the neural crest, disproving the current concept of a neural crest origin of thyroid neuroendocrine cells.


Journal of Biological Chemistry | 2009

Phosphorylation-induced Conformational Changes in Rap1b ALLOSTERIC EFFECTS ON SWITCH DOMAINS AND EFFECTOR LOOP

Martin M. Edreira; Sheng Li; Daniel Hochbaum; Sergio Wong; Alemayehu A. Gorfe; Fernando Ribeiro-Neto; Virgil L. Woods; Daniel L. Altschuler

Rap1b has been implicated in the transduction of the cAMP mitogenic response. Agonists that increase intracellular cAMP rapidly activate (i.e. GTP binding) and phosphorylate Rap1b on Ser179 at its C terminus. cAMP-dependent protein kinase (PKA)-mediated phosphorylation of Rap1b is required for cAMP-dependent mitogenesis, tumorigenesis, and inhibition of AKT activity. However, the role of phosphorylation still remains unknown. In this study, we utilized amide hydrogen/deuterium exchange mass spectroscopy (DXMS) to assess potential conformational changes and/or mobility induced by phosphorylation. We report here DXMS data comparing exchange rates for PKA-phosphorylated (Rap1-P) and S179D phosphomimetic (Rap1-D) Rap1b proteins. Rap1-P and Rap1-D behaved exactly the same, revealing an increased exchange rate in discrete regions along the protein; these regions include a domain around the phosphorylation site and unexpectedly the two switch loops. Thus, local effects induced by Ser179 phosphorylation communicate allosterically with distal domains involved in effector interaction. These results provide a mechanistic explanation for the differential effects of Rap1 phosphorylation by PKA on effector protein interaction.


Journal of Biological Chemistry | 2012

Ezrin-anchored Protein Kinase A Coordinates Phosphorylation-dependent Disassembly of a NHERF1 Ternary Complex to Regulate Hormone-sensitive Phosphate Transport

Bin Wang; Chris K. Means; Yanmei Yang; Tatyana Mamonova; Alessandro Bisello; Daniel L. Altschuler; John D. Scott; Peter A. Friedman

Background: Some inherited defects in NHERF1 are associated with high phosphate (Pi) excretion and skeletal abnormalities. Results: NHERF1 forms a multiprotein complex with Npt2a and ezrin. Mutants fail to assemble this ternary complex. Conclusion: The NHERF1 ternary complex is required for PTH-sensitive Pi transport. Significance: NHERF1 mutations may cause disease processes through structural changes that prevent assembly of multiprotein complexes. Congenital defects in the Na/H exchanger regulatory factor-1 (NHERF1) are linked to disordered phosphate homeostasis and skeletal abnormalities in humans. In the kidney, these mutations interrupt parathyroid hormone (PTH)-responsive sequestration of the renal phosphate transporter, Npt2a, with ensuing urinary phosphate wasting. We now report that NHERF1, a modular PDZ domain scaffolding protein, coordinates the assembly of an obligate ternary complex with Npt2a and the PKA-anchoring protein ezrin to facilitate PTH-responsive cAMP signaling events. Activation of ezrin-anchored PKA initiates NHERF1 phosphorylation to disassemble the ternary complex, release Npt2a, and thereby inhibit phosphate transport. Loss-of-function mutations stabilize an inactive NHERF1 conformation that we show is refractory to PKA phosphorylation and impairs assembly of the ternary complex. Compensatory mutations introduced in mutant NHERF1 re-establish the integrity of the ternary complex to permit phosphorylation of NHERF1 and rescue PTH action. These findings offer new insights into a novel macromolecular mechanism for the physiological action of a critical ternary complex, where anchored PKA coordinates the assembly and turnover of the Npt2a-NHERF1-ezrin complex.

Collaboration


Dive into the Daniel L. Altschuler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liguang Lou

Research Triangle Park

View shared research outputs
Top Co-Authors

Avatar

Mamta Wankhede

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Wang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Chris K. Means

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge