Daniel L. Rubin
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel L. Rubin.
PLOS Computational Biology | 2008
Kaustubh Supekar; Vinod Menon; Daniel L. Rubin; Mark A. Musen; Michael D. Greicius
Functional brain networks detected in task-free (“resting-state”) functional magnetic resonance imaging (fMRI) have a small-world architecture that reflects a robust functional organization of the brain. Here, we examined whether this functional organization is disrupted in Alzheimers disease (AD). Task-free fMRI data from 21 AD subjects and 18 age-matched controls were obtained. Wavelet analysis was applied to the fMRI data to compute frequency-dependent correlation matrices. Correlation matrices were thresholded to create 90-node undirected-graphs of functional brain networks. Small-world metrics (characteristic path length and clustering coefficient) were computed using graph analytical methods. In the low frequency interval 0.01 to 0.05 Hz, functional brain networks in controls showed small-world organization of brain activity, characterized by a high clustering coefficient and a low characteristic path length. In contrast, functional brain networks in AD showed loss of small-world properties, characterized by a significantly lower clustering coefficient (p<0.01), indicative of disrupted local connectivity. Clustering coefficients for the left and right hippocampus were significantly lower (p<0.01) in the AD group compared to the control group. Furthermore, the clustering coefficient distinguished AD participants from the controls with a sensitivity of 72% and specificity of 78%. Our study provides new evidence that there is disrupted organization of functional brain networks in AD. Small-world metrics can characterize the functional organization of the brain in AD, and our findings further suggest that these network measures may be useful as an imaging-based biomarker to distinguish AD from healthy aging.
Nucleic Acids Research | 2009
Natalya Fridman Noy; Nigam H. Shah; Patricia L. Whetzel; Benjamin Dai; Michael Dorf; Nicholas Griffith; Clement Jonquet; Daniel L. Rubin; Margaret-Anne D. Storey; Christopher G. Chute; Mark A. Musen
Biomedical ontologies provide essential domain knowledge to drive data integration, information retrieval, data annotation, natural-language processing and decision support. BioPortal (http://bioportal.bioontology.org) is an open repository of biomedical ontologies that provides access via Web services and Web browsers to ontologies developed in OWL, RDF, OBO format and Protégé frames. BioPortal functionality includes the ability to browse, search and visualize ontologies. The Web interface also facilitates community-based participation in the evaluation and evolution of ontology content by providing features to add notes to ontology terms, mappings between terms and ontology reviews based on criteria such as usability, domain coverage, quality of content, and documentation and support. BioPortal also enables integrated search of biomedical data resources such as the Gene Expression Omnibus (GEO), ClinicalTrials.gov, and ArrayExpress, through the annotation and indexing of these resources with ontologies in BioPortal. Thus, BioPortal not only provides investigators, clinicians, and developers ‘one-stop shopping’ to programmatically access biomedical ontologies, but also provides support to integrate data from a variety of biomedical resources.
Pharmacogenomics Journal | 2001
Teri E. Klein; Jeffrey T. Chang; Mildred K. Cho; K L Easton; R Fergerson; Micheal Hewett; Zhen Lin; Yueyi Liu; Shuo Liu; Diane E. Oliver; Daniel L. Rubin; F Shafa; Joshua M. Stuart; Russ B. Altman
Pharmacogenetics seeks to explain how people respond in different ways to the same drug treatment. A classic example of the importance of pharmacogenomics is the variation in individual responses to the anti-leukemia drug, 6-mercaptopurine. Most people metabolize the drug quickly. Some individuals, with a genetic variation for the enzyme thiopurine methyltransferase (TPMT),1 do not. Consequently, they need lower doses of 6-mercaptopurine for effective treatment as normal doses can be lethal. One of the many promises of the human genome project is an ability to pharmacologically treat individuals in a more personalized rather than statistical manner.
Journal of Digital Imaging | 2011
Ceyhun Burak Akgül; Daniel L. Rubin; Sandy Napel; Christopher F. Beaulieu; Hayit Greenspan; Burak Acar
Diagnostic radiology requires accurate interpretation of complex signals in medical images. Content-based image retrieval (CBIR) techniques could be valuable to radiologists in assessing medical images by identifying similar images in large archives that could assist with decision support. Many advances have occurred in CBIR, and a variety of systems have appeared in nonmedical domains; however, permeation of these methods into radiology has been limited. Our goal in this review is to survey CBIR methods and systems from the perspective of application to radiology and to identify approaches developed in nonmedical applications that could be translated to radiology. Radiology images pose specific challenges compared with images in the consumer domain; they contain varied, rich, and often subtle features that need to be recognized in assessing image similarity. Radiology images also provide rich opportunities for CBIR: rich metadata about image semantics are provided by radiologists, and this information is not yet being used to its fullest advantage in CBIR systems. By integrating pixel-based and metadata-based image feature analysis, substantial advances of CBIR in medicine could ensue, with CBIR systems becoming an important tool in radiology practice.
Radiology | 2012
Olivier Gevaert; Jiajing Xu; Chuong D. Hoang; Ann N. Leung; Yue Xu; Andrew Quon; Daniel L. Rubin; Sandy Napel; Sylvia K. Plevritis
PURPOSE To identify prognostic imaging biomarkers in non-small cell lung cancer (NSCLC) by means of a radiogenomics strategy that integrates gene expression and medical images in patients for whom survival outcomes are not available by leveraging survival data in public gene expression data sets. MATERIALS AND METHODS A radiogenomics strategy for associating image features with clusters of coexpressed genes (metagenes) was defined. First, a radiogenomics correlation map is created for a pairwise association between image features and metagenes. Next, predictive models of metagenes are built in terms of image features by using sparse linear regression. Similarly, predictive models of image features are built in terms of metagenes. Finally, the prognostic significance of the predicted image features are evaluated in a public gene expression data set with survival outcomes. This radiogenomics strategy was applied to a cohort of 26 patients with NSCLC for whom gene expression and 180 image features from computed tomography (CT) and positron emission tomography (PET)/CT were available. RESULTS There were 243 statistically significant pairwise correlations between image features and metagenes of NSCLC. Metagenes were predicted in terms of image features with an accuracy of 59%-83%. One hundred fourteen of 180 CT image features and the PET standardized uptake value were predicted in terms of metagenes with an accuracy of 65%-86%. When the predicted image features were mapped to a public gene expression data set with survival outcomes, tumor size, edge shape, and sharpness ranked highest for prognostic significance. CONCLUSION This radiogenomics strategy for identifying imaging biomarkers may enable a more rapid evaluation of novel imaging modalities, thereby accelerating their translation to personalized medicine.
Journal of The American College of Radiology | 2009
Elizabeth S. Burnside; Edward A. Sickles; Lawrence W. Bassett; Daniel L. Rubin; Carol H. Lee; Debra M. Ikeda; Ellen B. Mendelson; Pamela A. Wilcox; Priscilla F. Butler; Carl J. D'Orsi
The Breast Imaging Reporting and Data System (BI-RADS) initiative, instituted by the ACR, was begun in the late 1980s to address a lack of standardization and uniformity in mammography practice reporting. An important component of the BI-RADS initiative is the lexicon, a dictionary of descriptors of specific imaging features. The BI-RADS lexicon has always been data driven, using descriptors that previously had been shown in the literature to be predictive of benign and malignant disease. Once established, the BI-RADS lexicon provided new opportunities for quality assurance, communication, research, and improved patient care. The history of this lexicon illustrates a series of challenges and instructive successes that provide a valuable guide for other groups that aspire to develop similar lexicons in the future.
Neuroinformatics | 2008
William J. Bug; Giorgio A. Ascoli; Jeffrey S. Grethe; Amarnath Gupta; Christine Fennema-Notestine; Angela R. Laird; Stephen D. Larson; Daniel L. Rubin; Gordon M. Shepherd; Jessica A. Turner; Maryann E. Martone
A critical component of the Neuroscience Information Framework (NIF) project is a consistent, flexible terminology for describing and retrieving neuroscience-relevant resources. Although the original NIF specification called for a loosely structured controlled vocabulary for describing neuroscience resources, as the NIF system evolved, the requirement for a formally structured ontology for neuroscience with sufficient granularity to describe and access a diverse collection of information became obvious. This requirement led to the NIF standardized (NIFSTD) ontology, a comprehensive collection of common neuroscience domain terminologies woven into an ontologically consistent, unified representation of the biomedical domains typically used to describe neuroscience data (e.g., anatomy, cell types, techniques), as well as digital resources (tools, databases) being created throughout the neuroscience community. NIFSTD builds upon a structure established by the BIRNLex, a lexicon of concepts covering clinical neuroimaging research developed by the Biomedical Informatics Research Network (BIRN) project. Each distinct domain module is represented using the Web Ontology Language (OWL). As much as has been practical, NIFSTD reuses existing community ontologies that cover the required biomedical domains, building the more specific concepts required to annotate NIF resources. By following this principle, an extensive vocabulary was assembled in a relatively short period of time for NIF information annotation, organization, and retrieval, in a form that promotes easy extension and modification. We report here on the structure of the NIFSTD, and its predecessor BIRNLex, the principles followed in its construction and provide examples of its use within NIF.
Radiology | 2009
Charles E. Kahn; Curtis P. Langlotz; Elizabeth S. Burnside; John A. Carrino; David S. Channin; David M. Hovsepian; Daniel L. Rubin
The goals and current efforts of the Radiological Society of North America Radiology Reporting Committee are described. The committees charter provides an opportunity to improve the organization, content, readability, and usefulness of the radiology report and to advance the efficiency and effectiveness of the reporting process.
Journal of Digital Imaging | 2008
Daniel L. Rubin
The radiology community has recognized the need to create a standard terminology to improve the clarity of reports, to reduce radiologist variation, to enable access to imaging information, and to improve the quality of practice. This need has recently led to the development of RadLex, a controlled terminology for radiology. The creation of RadLex has proved challenging in several respects: It has been difficult for users to peruse the large RadLex taxonomies and for curators to navigate the complex terminology structure to check it for errors and omissions. In this work, we demonstrate that the RadLex terminology can be translated into an ontology, a representation of terminologies that is both human-browsable and machine-processable. We also show that creating this ontology permits computational analysis of RadLex and enables its use in a variety of computer applications. We believe that adopting an ontology representation of RadLex will permit more widespread use of the terminology and make it easier to collect feedback from the community that will ultimately lead to improving RadLex.
Journal of the American Medical Informatics Association | 2004
Mor Peleg; Daniel L. Rubin; Russ B. Altman
Petri Nets (PNs) and their extensions are promising methods for modeling and simulating biological systems. We surveyed PN formalisms and tools and compared them based on their mathematical capabilities as well as by their appropriateness to represent typical biological processes. We measured the ability of these tools to model specific features of biological systems and answer a set of biological questions that we defined. We found that different tools are required to provide all capabilities that we assessed. We created software to translate a generic PN model into most of the formalisms and tools discussed. We have also made available three models and suggest that a library of such models would catalyze progress in qualitative modeling via PNs. Development and wide adoption of common formats would enable researchers to share models and use different tools to analyze them without the need to convert to proprietary formats.