Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel L. Sparks is active.

Publication


Featured researches published by Daniel L. Sparks.


Journal of Biological Chemistry | 1995

Effects of the Neutral Lipid Content of High Density Lipoprotein on Apolipoprotein A-I Structure and Particle Stability

Daniel L. Sparks; Davidson Ws; Sissel Lund-Katz; Michael C. Phillips

Alterations in high density lipoprotein (HDL) composition that occur in dyslipidemic states may modulate a number of events involved in cholesterol homeostasis. To elucidate the details of how HDL-core composition can affect the molecular structure of different kinds of HDL particles, the conformation and stability of apoA-I have been investigated in homogeneous recombinant HDL particles (LpA-I) containing palmitoyloleoyl phosphatidylcholine (POPC), triolein (TG), and/or cholesteryl linoleate (CE). In a discoidal particle containing two molecules of apoA-I and 85 molecules of POPC, apoA-I exhibits an α-helix content of 70% and a free energy of stability of its α-helical segments (ΔG) of 2.2 kcal/mol. Inclusion of eight molecules of TG into the complex significantly reduces the α-helix content and stability of apoA-I, whereas inclusion of four molecules of CE into the complex has an opposite effect in that the α-helix content is significantly reduced and the stability of the remaining α-helical structure of apoA-I is increased. Neutral lipids have a different effect on apoA-I conformation in spherical LpA-I particles. In a sonicated-spherical LpA-I particle containing two molecules of apoA-I and 70 molecules of POPC, apoA-I exhibits an α-helix content of about 60% and a ΔG of 1.2 kcal/mol apoA-I. Inclusion of either 10 molecules of TG or six molecules of CE into such a particle increases both the α-helix content and stability of apoA-I. Increasing the CE/TG ratio in LpA-I particles that contain both neutral lipids enhances the stability of the α-helical segments. ApoA-I molecules tend to dissociate and cause particle instability when ΔG for the lipid-bound α-helices is less than that for helices in the lipid-free state. The stabilities of both discoidal and spherical LpA-I particles are relatively low when the only neutral lipid present is TG but the particle stability is enhanced by the presence of CE molecules. Such dissociation of apoA-I molecules from LpA-I particles that have a low CE/TG ratio would be promoted in the hypertriglyceridemic state in vivo.


American Journal of Pathology | 2011

Hepatic Lipase, High Density Lipoproteins, and Hypertriglyceridemia

Cynthia Chatterjee; Daniel L. Sparks

Hepatic lipase (HL) is a lipolytic enzyme that contributes to the regulation of plasma triglyceride (TG) levels. Elevated TG levels may increase the risk of developing coronary heart disease, and studies suggest that mutations in the HL gene may be associated with elevated TG levels and increased risk of coronary heart disease. Hepatic lipase facilitates the clearance of TG from the very low density lipoprotein (VLDL) pool, and this function is governed by the composition and quality of high density lipoprotein (HDL) particles. In humans, HL is a liver resident enzyme regulated by factors that release it from the liver and activate it in the bloodstream. HDL regulates the release of HL from the liver and HDL structure controls HL transport and activation in the circulation. Alterations in HDL-apolipoprotein composition can perturb HL function by inhibiting the release and activation of the enzyme. HDL structure may therefore affect plasma TG levels and coronary heart disease risk.


Biochimica et Biophysica Acta | 1997

Characterization of human apolipoprotein A-I expressed in Escherichia coli

Jean Bergeron; Philippe G. Frank; Florence Emmanuel; Martine Latta; Yuwei Zhao; Daniel L. Sparks; Eric Rassart; Patrice Denefle; Yves L. Marcel

Human apolipoprotein A-I (apoA-I), with an additional N-terminal extension (Met-Arg-Gly-Ser-(His)6-Met) (His-apoA-I), has been produced in Escherichia coli with a final yield after purification of 10 mg protein/1 of culture medium. We have characterized the conformation and structural properties of His-apoA-I in lipid-free form, and in reconstituted lipoproteins containing two apoA-I per particle (Lp2A-I) by both immunochemical and physicochemical techniques. The lipid-free forms of the two proteins present very similar secondary structure and stability, and have also very similar kinetics of association with dimyristoyl phosphatidylcholine. His-apoA-I and native apoA-I can be complexed with 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) to form similar, stable, either discoidal or spherical (sonicated) Lp2A-I particles. Lipid-bound native apoA-I and His-apoA-I showed very similar alpha-helical content (69% and 66%, respectively in discoidal Lp2A-I and 54% and 51%, respectively in spherical Lp2A-I). The conformation of His-apoA-I in lipid-free form and in discoidal or spherical Lp2A-I has also been shown to be similar to native apoA-I by immunochemical measurements using 13 monoclonal antibodies recognizing distinct apoA-I epitopes. In the free protein and in reconstituted Lp2A-I, the N-terminal has no effect on the affinity of any of the monoclonal antibodies and minimal effect on immunoreactivity values. Small differences in the exposure of some apoA-I epitopes are evident on discoidal particles, while no difference is apparent in the expression of any epitope of apoA-I on spherical Lp2A-I. The presence of the N-terminal extension also has no effect on the reaction of LCAT with the discoidal Lp2A-I or on the ability of complexes to promote cholesterol efflux from fibroblasts in culture. In conclusion, we show that His-apoA-I expressed in E. coli exhibits similar physicochemical properties to native apoA-I and is also identical to the native protein in its ability to interact with phospholipids and to promote cholesterol esterification and cellular cholesterol efflux.


Journal of Biological Chemistry | 1996

Specific Phospholipid Association with Apolipoprotein A-I Stimulates Cholesterol Efflux from Human Fibroblasts STUDIES WITH RECONSTITUTED SONICATED LIPOPROTEINS

Yuwei Zhao; Daniel L. Sparks; Yves L. Marcel

To understand how the lipid composition of high density lipoprotein mediates the efflux of cellular cholesterol, we have characterized the effects of variations in the lipid composition of well defined model sonicated apolipoprotein A-I (apoA-I)-containing lipoprotein (LpA-I) particle on cholesterol efflux from cultured human skin fibroblasts. LpA-I particles with varying content of phosphatidylcholine (POPC), phosphatidylinositol, sphingomyelin, cholesterol ester, and triolein were prepared by co-sonication. Association of as little as 5 mol of phosphatidylcholine with apoA-I is sufficient to transform lipid-free apoA-I into a distinct lipoprotein-like particle that is a significantly better acceptor of cellular cholesterol. Increasing the ratio of POPC/apoA-I from 5/1 to 35.5/1 in the sonicated LpA-I is associated with a significant increase in the release of cellular cholesterol. At low POPC/apoA-I ratios, native gradient gel electrophoresis of the LpA-I shows these lipoproteins to be small complexes (around 5-6 nm), with only 1 molecule of apoA-I (Lp1A-I). At a POPC/apoA-I ratio above 11/1, LpA-I form well defined complexes that contain 2 molecules of apoA-I (Lp2A-I) and range in size from 7.6 to 7.7 nm. Inclusion of sphingomyelin into an Lp1A-I further stimulates cholesterol efflux significantly. In contrast, inclusion of either sphingomyelin or phosphatidylinositol into a sonicated Lp2A-I has no effect on cholesterol efflux. Incorporation of cholesterol ester and/or triolein into an Lp2A-I particle is associated with a small reduction in cholesterol efflux to these lipoproteins. Therefore, cholesterol efflux from human fibroblasts is directly proportional to the amount and type of phospholipid in a sonicated LpA-I particle. Changes in the conformation and charge of apoA-I that result from changes in the lipid composition of a sonicated LpA-I particle appear to directly affect the ability of the lipoprotein to bind and retain cholesterol molecules. These data therefore suggest that the adsorption/desorption of cholesterol molecules to/from a sonicated LpA-I complex may be less sensitive to interfacial lipid-lipid interactions, but may depend on a conformation-dependent ability of apoA-I to bind cholesterol.


Biochimica et Biophysica Acta | 1998

EFFECT OF THE SURFACE LIPID COMPOSITION OF RECONSTITUTED LPA-I ON APOLIPOPROTEIN A-I STRUCTURE AND LECITHIN:CHOLESTEROL ACYLTRANSFERASE ACTIVITY

Daniel L. Sparks; Philippe G. Frank; Tracey A-M. Neville

Characterization of the factors that regulate plasma cholesterol esterification shows that the increased activity of lecithin:cholesterol acyltransferase (LCAT) in the plasma of hyperlipidemic subjects is due to enhanced interactions with a preferred substrate. The details of how the physical properties of high density lipoproteins (HDL) may affect their ability to stimulate cholesterol esterification by LCAT have been investigated in homogeneous reconstituted HDL particles containing two molecules of apolipoprotein (apo) A-I (Lp2A-I) and palmitoyl-oleoyl phosphatidylcholine (POPC). Increasing the POPC or sphingomyelin (SPH) content in an Lp2A-I complex increases particle size and stability but decreases the negative surface charge of apoA-I. Increasing Lp2A-I POPC or SPH content also significantly inhibits cholesterol esterification by LCAT. Increase in the maximum rate of CE production (Vmax) by LCAT is directly related to an increased negative charge on the different Lp2A-I particles and to a reduced amount and stability of amphipathic alpha-helices in apoA-I. In contrast, increasing the Lp2A-I complex negative charge directly by addition of a charged lipid, phosphatidylinositol (PI), has minimal effect on apoA-I conformation and LCAT activation. While variations in Lp2A-I PI content have little effect on the interfacial binding of LCAT, increasing POPC content appears to directly increase the binding affinity of LCAT for the different Lp2A-I particles. These results show that LCAT is stimulated by an apoA-I conformation-dependent increase in negative charge but is less sensitive to electrostatic changes in the lipid interface of discoidal Lp2A-I. The activation of LCAT appears to be dependent on the exposure of both central (residues 98-132) and N-terminal (residues 2-8) domains in apoA-I. A strong relationship between the immunoreactivity of two specific mAbs, 4H1 and A11, and LCAT reactivity suggests that the N-terminus of apoA-I may interact with a central domain in a manner that may regulate the accessibility of LCAT to the edge of the disc. This indicates that the conformation and charge of apoA-I are sensitive to the surface-lipid composition of HDL particles and play a central role in regulating LCAT activation. Since alterations in the surface lipid composition of HDL particles from hyperlipidemic subjects also modify the charge and structure of these particles, this may stimulate the rates of cholesterol esterification by making these lipoproteins preferred LCAT substrates.


Protein Science | 2009

Apolipoprotein AI tertiary structures determine stability and phospholipid‐binding activity of discoidal high‐density lipoprotein particles of different sizes

Bin Chen; Xuefeng Ren; Tracey A-M. Neville; W. Gray Jerome; David W. Hoyt; Daniel L. Sparks; Gang Ren; Jianjun Wang

Human high‐density lipoprotein (HDL) plays a key role in the reverse cholesterol transport pathway that delivers excess cholesterol back to the liver for clearance. In vivo, HDL particles vary in size, shape and biological function. The discoidal HDL is a 140–240 kDa, disk‐shaped intermediate of mature HDL. During mature spherical HDL formation, discoidal HDLs play a key role in loading cholesterol ester onto the HDL particles by activating the enzyme, lecithin:cholesterol acyltransferase (LCAT). One of the major problems for high‐resolution structural studies of discoidal HDL is the difficulty in obtaining pure and, foremost, homogenous sample. We demonstrate here that the commonly used cholate dialysis method for discoidal HDL preparation usually contains 5–10% lipid‐poor apoAI that significantly interferes with the high‐resolution structural analysis of discoidal HDL using biophysical methods. Using an ultracentrifugation method, we quickly removed lipid‐poor apoAI. We also purified discoidal reconstituted HDL (rHDL) into two pure discoidal HDL species of different sizes that are amendable for high‐resolution structural studies. A small rHDL has a diameter of 7.6 nm, and a large rHDL has a diameter of 9.8 nm. We show that these two different sizes of discoidal HDL particles display different stability and phospholipid‐binding activity. Interestingly, these property/functional differences are independent from the apoAI α‐helical secondary structure, but are determined by the tertiary structural difference of apoAI on different discoidal rHDL particles, as evidenced by two‐dimensional NMR and negative stain electron microscopy data. Our result further provides the first high‐resolution NMR data, demonstrating a promise of structural determination of discoidal HDL at atomic resolution using a combination of NMR and other biophysical techniques.


Biochimica et Biophysica Acta | 1998

Hepatic lipase affects both HDL and ApoB-containing lipoprotein levels in the mouse

Sylvie Braschi; Nicole Couture; Adriana Gambarotta; Benoit R. Gauthier; Cynthia R. Coffill; Daniel L. Sparks; Nobuyo Maeda; Joshua R. Schultz

Transgenic mice were created overproducing a range of human HL (hHL) activities (4-23-fold increase) to further examine the role of hepatic lipase (HL) in lipoprotein metabolism. A 5-fold increase in heparin releasable HL activity was accompanied by moderate (approx. 20%) decreases in plasma total and high density lipoprotein (HDL) cholesterol and phospholipid (PL) but no significant change in triglyceride (TG). A 23-fold increase in HL activity caused a more significant decrease in plasma total and HDL cholesterol, PL and TG (77%, 64%, 60%, and 24% respectively), and a substantial decrease in lipoprotein lipids amongst IDL, LDL and HDL fractions. High levels of HL activity diminished the plasma concentration of apoA-I, A-II and apoE (76%, 48% and 75%, respectively). In contrast, the levels of apoA-IV-containing lipoproteins appear relatively resistant to increased titers of hHL activity. Increased hHL activity was associated with a progressive decrease in the levels and an increase in the density of LpAI and LpB48 particles. The increased rate of disappearance of 125I-labeled human HDL from the plasma of hHL transgenic mice suggests increased clearance of HDL apoproteins in the transgenic mice. The effect of increased HL activity on apoB100-containing lipoproteins was more complex. HL-deficient mice have substantially decreased apoB100-containing low density lipoproteins (LDL) compared to controls. Increased HL activity is associated with a transformation of the lipoprotein density profile from predominantly buoyant (VLDL/IDL) lipoproteins to more dense (LDL) fractions. Increased HL activity from moderate (4-fold) to higher (5-fold) levels decreased the levels of apoB100-containing particles. Thus, at normal to moderately high levels in the mouse, HL promotes the metabolism of both HDL and apoB-containing lipoproteins and thereby acts as a key determinant of plasma levels of both HDL and LDL.


Biochemistry and Cell Biology | 2007

Lipoprotein electrostatic properties regulate hepatic lipase association and activity

Jonathan Boucher; Trang NguyenT. Nguyen; Daniel L. Sparks

The effect of lipoprotein electrostatic properties on the catalytic regulation of hepatic lipase (HL) was investigated. Enrichment of serum or very low density lipoprotein (VLDL) with oleic acid increased lipoprotein negative charge and stimulated lipid hydrolysis by HL. Similarly, enrichment of serum or isolated lipoproteins with the anionic phospholipids phosphatidylinositol (PI), phosphatidic acid, or phosphatidylserine also increased lipoprotein negative charge and stimulated hydrolysis by HL. Anionic lipids had a small effect on phospholipid hydrolysis, but significantly stimulated triacylglyceride (TG) hydrolysis. High density lipoprotein (HDL) charge appears to have a specific effect on lipolysis. Enrichment of HDL with PI significantly stimulated VLDL-TG hydrolysis by HL. To determine whether HDL charge affects the association of HL with HDL and VLDL, HL-lipoprotein interactions were probed immunochemically. Under normal circumstances, HL associates with HDL particles, and only small amounts bind to VLDL. PI enrichment of HDL blocked the binding of HL with HDL. These data indicate that increasing the negative charge of HDL stimulates VLDL-TG hydrolysis by reducing the association of HL with HDL. Therefore, HDL controls the hydrolysis of VLDL by affecting the interlipoprotein association of HL. Lipoprotein electrostatic properties regulate lipase association and are an important regulator of the binding and activity of lipolytic enzymes.


Journal of Biological Chemistry | 2000

Apolipoprotein A-I Regulates Lipid Hydrolysis by Hepatic Lipase

Tanya A. Ramsamy; Tracey A-M. Neville; Bobby M. Chauhan; Dhiraj Aggarwal; Daniel L. Sparks

Association of hepatic lipase (HL) with pure heparan sulfate proteoglycans (HSPG) has little effect on hydrolysis of high density lipoprotein (HDL) particles, but significantly inhibits (>80%) the hydrolysis of low (LDL) and very low density lipoproteins (VLDL). Lipolytic inhibition is associated with a differential ability of the lipoproteins to remove HL from the HSPG. LDL and VLDL are unable to displace HL, whereas HDL readily displaces HL from the HSPG. These data show that HSPG-bound HL is inactive. Purified apolipoprotein (apo) A-I is more efficient than HDL at liberating HL from HSPG, and HL displacement is associated with the direct binding of apoA-I to HSPG. However, displacement of HL by apoA-I does not enhance hydrolysis of VLDL particles. This appears due to the direct inhibition of HL by apoA-I. Both apoA-I and HDL are able to inhibit VLDL lipid hydrolysis by up to 60%. Inhibition of VLDL hydrolysis is associated with the binding of apoA-I to the surface of the VLDL particle and a concomitant decreased affinity for HL. These data show that apoA-I can regulate lipid hydrolysis by HL by liberating/activating the enzyme from cell surface proteoglycans and by directly modulating lipoprotein binding and hydrolysis.


Biochemistry | 2008

Linoleic acid-enriched phospholipids act through peroxisome proliferator-activated receptors alpha to stimulate hepatic apolipoprotein A-I secretion.

Nihar R. Pandey; Joanna Renwick; Ayesha Misquith; Ken Sokoll; Daniel L. Sparks

A uniquely formulated soy phospholipid, phosphatidylinositol (PI), is under development as a therapeutic agent for increasing plasma high-density lipoprotein (HDL) levels. Soy PI has been shown to increase plasma HDL and apolipoprotein A-I (apoA-I) levels in phase I human trials. Low micromolar concentrations of PI increase the secretion of apoA-I in model human hepatoma cell lines, through activation of G-protein and mitogen-activated protein (MAP) kinase pathways. Experiments were undertaken to determine the importance of the PI head group and acyl chain composition on hepatic apoA-I secretion. Phospholipids with choline and inositol head groups and one or more linoleic acid (LA) acyl chains were shown to stimulate apoA-I secretion by HepG2 cells and primary human hepatocytes. Phospholipids containing two LA groups (dilinoleoylphosphatidylcholine, DLPC) were twice as active as those with only one LA group and promoted a 4-fold stimulation in apoA-I secretion. Inhibition of cytosolic phospholipase A2 with pyrrolidine 1 (10 microM) resulted in complete attenuation of PI- and DLPC-induced apoA-I secretion. Pretreatment with the peroxisome proliferator-activated receptor alpha (PPARalpha) inhibitor MK886 (10 microM) also completely blocked PI- and DLPC-induced apoA-I secretion. Hepatic PPARalpha expression was significantly increased by both PI and DLPC. However, in contrast to that seen with the fibrate drugs, PI caused minimal inhibition of catalytic activities of cytochrome P450 and UGT1A1 enzymes. These data suggest that LA-enriched phospholipids stimulate hepatic apoA-I secretion through a MAP kinase stimulation of PPARalpha. LA-enriched phospholipids have a greater apoA-I secretory activity than the fibrate drugs and a reduced likelihood to interfere with concomitant drug therapies.

Collaboration


Dive into the Daniel L. Sparks's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe G. Frank

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Sissel Lund-Katz

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge