Daniel Lafitte
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Lafitte.
Journal of Proteomics | 2011
David Calligaris; Claude Villard; Daniel Lafitte
Top-down mass spectrometry strategies allow identification and characterization of proteins and protein networks by direct fragmentation. These analytical processes involve a panel of fragmentation mechanisms, some of which preserve protein post-translational modifications. Thus top-down is of special interest in clinical biochemistry to probe modified proteins as potential disease biomarkers. This review describes separating methods, mass spectrometry instrumentation, bioinformatics, and theoretical aspects of fragmentation mechanisms used for top-down analysis. The biological interest of this strategy is extensively reported regarding the characterization of post-translational modifications in biochemical pathways and the discovery of biomarkers. One has to bear in mind that quantitative aspects that are beyond the focus of this review are also of critical important for biomarker discovery. The constant evolution of technologies makes top-down strategies crucial players in clinical and basic proteomics.
Cellular and Molecular Life Sciences | 2010
David Calligaris; Pascal Verdier-Pinard; François Devred; Claude Villard; Diane Braguer; Daniel Lafitte
This review explores various aspects of the interaction between microtubule targeting agents and tubulin, including binding site, affinity, and drug resistance. Starting with the basics of tubulin polymerization and microtubule targeting agent binding, we then highlight how the three-dimensional structures of drug–tubulin complexes obtained on stabilized tubulin are seeded by precise biological and biophysical data. New avenues opened by thermodynamics analysis, high throughput screening, and proteomics for the molecular pharmacology of these drugs are presented. The amount of data generated by biophysical, proteomic and cellular techniques shed more light onto the microtubule–tubulin equilibrium and tubulin–drug interaction. Combining these approaches provides new insight into the mechanism of action of known microtubule interacting agents and rapid in-depth characterization of next generation molecules targeting the interaction between microtubules and associated modulators of their dynamics. This will facilitate the design of improved and/or alternative chemotherapies targeting the microtubule cytoskeleton.
Analytical Biochemistry | 2009
Pascal Verdier-Pinard; Eddy Pasquier; Hui Xiao; Berta Burd; Claude Villard; Daniel Lafitte; Leah M. Miller; Ruth Hogue Angeletti; Susan Band Horwitz; Diane Braguer
Since the discovery of tubulin as the major component of microtubules over 40 years ago, its diversity of forms has raised a continuum of fundamental questions about its regulation and functions in a variety of organisms across phyla. Its high abundance in the brain or in specialized organelles such as cilia has allowed early characterization of this important target for anticancer drugs. However, it was only when matrix-assisted laser desorption ionization and electrospray ionization mass spectrometry technologies became available in the late 1980s that the full complexity of tubulin expression patterns became more obvious. This contributed in a major way to the idea that due to increasing and conserved tubulin heterogeneity during evolution, a tubulin code read by microtubule associated proteins might exist and be of functional significance. We review here the merging of recent genetic and cell biology studies with proteomics to decipher this code and illustrate some of the tubulin proteomic approaches with new data generated in our laboratories.
Brain | 2013
Manal Salmi; Nadine Bruneau; Jennifer Cillario; Natalia Lozovaya; Annick Massacrier; Emmanuelle Buhler; Robin Cloarec; Timur Tsintsadze; Françoise Watrin; Vera Tsintsadze; Céline Zimmer; Claude Villard; Daniel Lafitte; Carlos Cardoso; Lan Bao; Gaetan Lesca; Gabrielle Rudolf; Françoise Muscatelli; Vanessa Pauly; Ilgam Khalilov; Pascale Durbec; Yehezkel Ben-Ari; Nail Burnashev; Alfonso Represa; Pierre Szepetowski
Altered development of the human cerebral cortex can cause severe malformations with often intractable focal epileptic seizures and may participate in common pathologies, notably epilepsy. This raises important conceptual and therapeutic issues. Two missense mutations in the sushi repeat-containing protein SRPX2 had been previously identified in epileptic disorders with or without structural developmental alteration of the speech cortex. In the present study, we aimed to decipher the precise developmental role of SRPX2, to have a better knowledge on the consequences of its mutations, and to start addressing therapeutic issues through the design of an appropriate animal model. Using an in utero Srpx2 silencing approach, we show that SRPX2 influences neuronal migration in the developing rat cerebral cortex. Wild-type, but not the mutant human SRPX2 proteins, rescued the neuronal migration phenotype caused by Srpx2 silencing in utero, and increased alpha-tubulin acetylation. Following in utero Srpx2 silencing, spontaneous epileptiform activity was recorded post-natally. The neuronal migration defects and the post-natal epileptic consequences were prevented early in embryos by maternal administration of tubulin deacetylase inhibitor tubacin. Hence epileptiform manifestations of developmental origin could be prevented in utero, using a transient and drug-based therapeutic protocol.
Trends in Biotechnology | 2012
Rima Ait-Belkacem; Lyna Sellami; Claude Villard; Edwin DePauw; David Calligaris; Daniel Lafitte
Mass spectrometry (MS)-based technology provides label-free localization of molecules in tissue samples. Drugs, proteins, lipids and metabolites can easily be monitored in their environment. Resolution can be achieved down to the cellular level (10-20 μm) for conventional matrix-assisted laser desorption/ionization (MALDI) imaging, or even to the subcellular level for more complex technologies such as secondary ionization mass spectrometry (SIMS) imaging. One question remains: are we going to be able to investigate functional relationships between drugs and proteins and compare with localized phenomena? This review describes the various spatial levels of investigation offered by mass spectrometry imaging (MSI), and the advantages and disadvantages compared with other labeling technologies.
Proteomics | 2014
Rima Ait-Belkacem; Caroline Berenguer; Claude Villard; L'Houcine Ouafik; Dominique Figarella-Branger; Olivier Chinot; Daniel Lafitte
Glioblastoma multiforme is one of the most common intracranial tumors encountered in adults. This tumor of very poor prognosis is associated with a median survival rate of approximately 14 months. One of the major issues to better understand the biology of these tumors and to optimize the therapy is to obtain the molecular structure of glioblastoma. MALDI molecular imaging enables location of molecules in tissues without labeling. However, molecular identification in situ is not an easy task. In this paper, we used MALDI imaging coupled to in‐source decay to characterize markers of this pathology. We provided MALDI molecular images up to 30 μm spatial resolution of mouse brain tissue sections. MALDI images showed the heterogeneity of the glioblastoma. In the various zones and at various development stages of the tumor, using our top‐down strategy, we identified several proteins. These proteins play key roles in tumorigenesis. Particular attention was given to the necrotic area with characterization of hemorrhage, one of the most important poor prognosis factors in glioblastoma.
Biochimica et Biophysica Acta | 2002
Daniel Lafitte; Philipp O. Tsvetkov; François Devred; René Toci; Frédéric Barras; Claudette Briand; Alexander A. Makarov; Jacques Haiech
Calmodulin is the most ubiquitous calcium binding protein. The protein is very sensitive to oxidation and this modification has pronounced effects on calmodulin function. In this work, we decided to fully oxidise calmodulin in order to study the consequences on cation binding, domain stability, and alpha helicity. Oxidation of methionines unfolds completely the apostate of the protein, which upon calcium binding recovers the major part of its secondary and tertiary structure. However, the unstructuring of the apostate results in a protein that binds calcium to any site in an independent manner, does not bind magnesium and does not possess auxiliary sites anymore.
Journal of Biological Chemistry | 2013
Jimmy Stalin; Karim Harhouri; Lucas Hubert; Caroline Subrini; Daniel Lafitte; Jean-Claude Lissitzky; Nadia Elganfoud; Stéphane Robert; Alexandrine Foucault-Bertaud; Elise Kaspi; Florence Sabatier; Michel Aurrand-Lions; Nathalie Bardin; Lars Holmgren; Françoise Dignat-George; Marcel Blot-Chabaud
Background: Soluble melanoma cell adhesion molecule (sMCAM/sCD146) promotes angiogenic effects on endothelial progenitor cells (EPC). Results: sCD146 binds angiomotin in EPC and triggers the activation of different signaling pathways. Silencing angiomotin prevents this activation and angiogenic effects. Conclusion: Angiomotin is identified as a novel binding partner of sCD146. Significance: Angiomotin mediates the angiogenic effects of sCD146. The melanoma cell adhesion molecule (CD146) contains a circulating proteolytic variant (sCD146), which is involved in inflammation and angiogenesis. Its circulating level is modulated in different pathologies, but its intracellular transduction pathways are still largely unknown. Using peptide pulldown and mass spectrometry, we identified angiomotin as a sCD146-associated protein in endothelial progenitor cells (EPC). Interaction between angiomotin and sCD146 was confirmed by enzyme-linked immunosorbent assay (ELISA), homogeneous time-resolved fluorescence, and binding of sCD146 on both immobilized recombinant angiomotin and angiomotin-transfected cells. Silencing angiomotin in EPC inhibited sCD146 angiogenic effects, i.e. EPC migration, proliferation, and capacity to form capillary-like structures in Matrigel. In addition, sCD146 effects were inhibited by the angiomotin inhibitor angiostatin and competition with recombinant angiomotin. Finally, binding of sCD146 on angiomotin triggered the activation of several transduction pathways that were identified by antibody array. These results delineate a novel signaling pathway where sCD146 binds to angiomotin to stimulate a proangiogenic response. This result is important to find novel target cells of sCD146 and for the development of therapeutic strategies based on EPC in the treatment of ischemic diseases.
Biophysical Journal | 2003
Marjaana Nousiainen; Peter J. Derrick; Daniel Lafitte; Pirjo Vainiotalo
Synthetic RS20 peptide and a set of its point-mutated peptide analogs have been used to analyze the interactions between calmodulin (CaM) and the CaM-binding sequence of smooth-muscle myosin light chain kinase both in the presence and the absence of Ca(2+). Particular peptides, which were expected to have different binding strengths, were chosen to address the effects of electrostatic and bulky mutations on the binding affinity of the RS20 sequence. Relative affinity constants for protein/ligand interactions have been determined using electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry. The results evidence the importance of electrostatic forces in interactions between CaM and targets, particularly in the presence of Ca(2+), and the role of hydrophobic forces in contributing additional stability to the complexes both in the presence and the absence of Ca(2+).
Methods in Cell Biology | 2010
François Devred; Pascale Barbier; Daniel Lafitte; Isabelle Landrieu; Guy Lippens; Vincent Peyrot
Microtubules are implicated in many essential cellular processes such as architecture, cell division, and intracellular traffic, due to their dynamic instability. This dynamicity is tightly regulated by microtubule-associated proteins (MAPs), such as tau and stathmin. Despite extensive studies motivated by their central role in physiological functions and pathological role in neurodegenerative diseases and cancer, the precise mechanisms of tau and stathmin binding to tubulin and their consequences on microtubule stability are still not fully understood. One of the most crucial points missing is a quantitative thermodynamic description of their interaction with tubulin/microtubules and of the tubulin complexes formed upon these interactions. In this chapter, we will focus on the use of analytical ultracentrifugation, isothermal titration calorimetry, and nuclear magnetic resonance-three powerful and complementary techniques in the field of MAP-tubulin/microtubule interactions, in addition to the spectrometric techniques and co-sedimentation approach. We will present the limits of these techniques to study this particular interaction and precautions that need to be taken during MAPs preparation. Understanding the molecular mechanisms that govern MAPs action on microtubular network will not only shed new light on the role of this crucial family of protein in the biology of the cell, but also hopefully open new paths to increase the therapeutic efficiency of microtubule-targeting drugs in cancers therapies and neurodegeneratives diseases prevention.