Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Le Rudulier is active.

Publication


Featured researches published by Daniel Le Rudulier.


Plant Physiology | 2004

Proline betaine accumulation and metabolism in alfalfa plants under sodium chloride stress. Exploring its compartmentalization in nodules.

Jean-Charles Trinchant; Alexandre Boscari; Guillaume Spennato; Ghislaine Van de Sype; Daniel Le Rudulier

The osmoprotectant Pro betaine is the main betaine identified in alfalfa (Medicago sativa). We have investigated the long-term responses of nodulated alfalfa plants to salt stress, with a particular interest for Pro betaine accumulation, compartmentalization, and metabolism. Exposure of 3-week-old nodulated alfalfa plants to 0.2 m NaCl for 4 weeks was followed by a 10-, 4-, and 8-fold increase in Pro betaine in shoots, roots, and nodules, respectively. Isotope-labeling studies in alfalfa shoots indicate that [14C]Pro betaine was synthesized from l-[14C]Pro. [14C]Pro betaine was efficiently catabolized through sequential demethylations via N-methylPro and Pro. Salt stress had a minor effect on Pro betaine biosynthesis, whereas it strongly reduced Pro betaine turnover. Analysis of Pro betaine and Pro compartmentalization within nodules revealed that 4 weeks of salinization of the host plants induced a strong increase in cytosol and bacteroids. The estimated Pro betaine and Pro concentrations in salt-stressed bacteroids reached 7.4 and 11.8 mm, respectively, compared to only 0.8 mm in control bacteroids. Na+ content in nodule compartments was also enhanced under salinization, leading to a concentration of 14.7 mm in bacteroids. [14C]Pro betaine and [14C]Pro were taken up by purified symbiosomes and free bacteroids. There was no indication of saturable carrier(s), and the rate of uptake was moderately enhanced by salinization. Ultrastructural analysis showed a large peribacteroid space in salt-stressed nodules, suggesting an increased turgor pressure inside the symbiosomes, which might partially be due to an elevated concentration in Pro, Pro betaine, and Na+ in this compartment.


Journal of Biological Chemistry | 2008

Crystal Structures of the Choline/Acetylcholine Substrate-binding Protein ChoX from Sinorhizobium meliloti in the Liganded and Unliganded-Closed States

Christine Oswald; Sander H. J. Smits; Marina Höing; Linda Sohn-Bösser; Laurence Dupont; Daniel Le Rudulier; Lutz Schmitt; Erhard Bremer

The ATP-binding cassette transporter ChoVWX is one of several choline import systems operating in Sinorhizobium meliloti. Here fluorescence-based ligand binding assays were used to quantitate substrate binding by the periplasmic ligand-binding protein ChoX. These data confirmed that ChoX recognizes choline and acetylcholine with high and medium affinity, respectively. We also report the crystal structures of ChoX in complex with either choline or acetylcholine. These structural investigations revealed an architecture of the ChoX binding pocket and mode of substrate binding similar to that reported previously for several compatible solute-binding proteins. Additionally the ChoX-acetylcholine complex permitted a detailed structural comparison with the carbamylcholine-binding site of the acetylcholine-binding protein from the mollusc Lymnaea stagnalis. In addition to the two liganded structures of ChoX, we were also able to solve the crystal structure of ChoX in a closed, substrate-free conformation that revealed an architecture of the ligand-binding site that is superimposable to the closed, ligand-bound form of ChoX. This structure is only the second of its kind and raises the important question of how ATP-binding cassette transporters are capable of distinguishing liganded and unliganded-closed states of the binding protein.


Microbiology | 1997

Molecular characterization of the bet genes encoding glycine betaine synthesis in Sinorhizobium meliloti 102F34

Jean-Alain Pocard; Nadine Vincent; E. Boncompagni; Linda Tombras Smith; Marie-Christine Poggi; Daniel Le Rudulier

As a first step towards the elucidation of the molecular mechanisms responsible for the utilization of choline and glycine betaine (betaine) either as carbon and nitrogen sources or as osmoprotectants in Sinorhizobium meliloti, we selected a Tn5 mutant, LTS23-1020, which failed to grow on choline but grew on betaine. The mutant was deficient in choline dehydrogenase (CDH) activity, failed to oxidize [methyl-14C]choline to [methyl-14C]betaine, and did not use choline, but still used betaine, as an osmoprotectant. The Tn5 mutation in LTS23-1020 was complemented by plasmid pCHO34, isolated from a genomic bank of S. meliloti 102F34. Subcloning and DNA sequencing showed that pCHO34 harbours two ORFs which showed 60% and 57% identity with the Escherichia coli betB gene encoding betaine-aldehyde dehydrogenase (BADH) and betA gene encoding CDH, respectively. In addition to the homology with E. coli genes, the deduced sequence of the sinorhizobial BADH protein displays consensus sequences also found in plant BADHs. The deduced sequence of the sinorhizobial CDH protein shares only 21% identical residues with choline oxidase from Arthrobacter globiformis. The structural organization of the betBA genes in S. meliloti differs from that described in E. coli: (i) the two ORFs are separated by a 210 bp sequence containing inverted repeats resembling a putative rho-independent transcription terminator, and (ii) no sequence homologous to betT (high-affinity choline transport system) or betI (regulator) was found in the vicinity of the sinorhizobial betBA genes. Evidence is also presented that the S. meliloti betBA genes are not located on the megaplasmids.


Journal of Bacteriology | 2002

BetS Is a Major Glycine Betaine/Proline Betaine Transporter Required for Early Osmotic Adjustment in Sinorhizobium meliloti

Alexandre Boscari; Karine Mandon; Laurence Dupont; Marie-Christine Poggi; Daniel Le Rudulier

Hybridization to a PCR product derived from conserved betaine choline carnitine transporter (BCCT) sequences led to the identification of a 3.4-kb Sinorhizobium meliloti DNA segment encoding a protein (BetS) that displays significant sequence identities to the choline transporter BetT of Escherichia coli (34%) and to the glycine betaine transporter OpuD of Bacillus subtilis (30%). Although the BetS protein shows a common structure with BCCT systems, it possesses an unusually long hydrophilic C-terminal extension (169 amino acids). After heterologous expression of betS in E. coli mutant strain MKH13, which lacks choline, glycine betaine, and proline transport systems, both glycine betaine and proline betaine uptake were restored, but only in cells grown at high osmolarity or subjected to a sudden osmotic upshock. Competition experiments demonstrated that choline, ectoine, carnitine, and proline were not effective competitors for BetS-mediated betaine transport. Kinetic analysis revealed that BetS has a high affinity for betaines, with K(m)s of 16 +/- 2 microM and 56 +/- 6 microM for glycine betaine and proline betaine, respectively, in cells grown in minimal medium with 0.3 M NaCl. BetS activity appears to be Na(+) driven. In an S. meliloti betS mutant, glycine betaine and proline betaine uptake was reduced by about 60%, suggesting that BetS represents a major component of the overall betaine uptake activities in response to salt stress. beta-Galactosidase activities of a betS-lacZ strain grown in various conditions showed that betS is constitutively expressed. Osmotic upshock experiments performed with wild-type and betS mutant cells, treated or not with chloramphenicol, indicated that BetS-mediated betaine uptake is the consequence of immediate activation of existing proteins by high osmolarity, most likely through posttranslational activation. Growth experiments underscored the crucial role of BetS as an emerging system involved in the rapid acquisition of betaines by S. meliloti subjected to osmotic upshock.


Journal of Bacteriology | 2006

Proline Betaine Uptake in Sinorhizobium meliloti: Characterization of Prb, an Opp-Like ABC Transporter Regulated by both Proline Betaine and Salinity Stress

Geneviève Alloing; Isabelle Travers; Brice Sagot; Daniel Le Rudulier; Laurence Dupont

Sinorhizobium meliloti uses proline betaine (PB) as an osmoprotectant when osmotically stressed and as an energy source in low-osmolarity environments. To fulfill this dual function, two separate PB transporters, BetS and Hut, that contribute to PB uptake at high and low osmolarity, respectively, have been previously identified. Here, we characterized a novel transport system that mediates the uptake of PB at both high and low osmolarities. Sequence analysis of Tn5-luxAB chromosomal insertions from several PB-inducible mutants has revealed the presence of a four-gene locus encoding the components of an ABC transporter, Prb, which belongs to the oligopeptide permease (Opp) family. Surprisingly, prb mutants were impaired in their ability to transport PB, and oligopeptides were not shown to be competitors for PB uptake. Further analysis of Prb specificity has shown its ability to take up other quaternary ammonium compounds such as choline and, to a lesser extent, glycine betaine. Interestingly, salt stress and PB were found to control prb expression in a positive and synergistic way and to increase Prb transport activity. At low osmolarity, Prb is largely implicated in PB uptake by stationary-phase cells, likely to provide PB as a source of carbon and nitrogen. Furthermore, at high osmolarity, the analysis of prb and betS single and double mutants demonstrated that Prb, together with BetS, is a key system for protection by PB.


Current Microbiology | 2002

Inhibition of Biosynthesis and Activity of Nitrogenase in Azospirillum brasilense Sp7 Under Salinity Stress

Anil Kumar Tripathi; Thirunavukkarasu Nagarajan; Subhash C. Verma; Daniel Le Rudulier

Azospirillum brasilense is a microaerophilic, plant growth-promoting bacterium, whose nitrogenase activity has been shown to be sensitive to salinity stress. Growth of A. brasilense in semi-solid medium showed that diazotrophic growth in N-free medium was relatively less sensitive to high NaCl concentrations (200–400 mM) than that in presence of NH4+. Increase in salinity stress to diazotrophic A. brasilense in the semi-solid medium led to the migration of the pellicle to deeper anaerobic zones. Assays of acetylene reduction and nifH-lacZ and nifA-lacZ fusions indicated that salinity stress inhibited nitrogenase biosynthesis more strongly than nitrogenase activity. Under salt stress, the amount of dinitrogenase reductase inactivated by ADP-ribosylation was strongly reduced, indicating that the dinitrogenase reductase ADP ribosyl transferase (DRAT) activity was also inhibited by increased NaCl concentrations. Movement of the pellicle to the anaerobic zone and inhibition of DRAT might be adaptive responses of A. brasilense to salinity stress under diazotrophic conditions. Supplementation of glycine betaine, which alleviates salt stress, partially reversed both responses.


Journal of Bacteriology | 2004

The Sinorhizobium meliloti ABC Transporter Cho Is Highly Specific for Choline and Expressed in Bacteroids from Medicago sativa Nodules

Laurence Dupont; Isabelle Garcia; Marie-Christine Poggi; Geneviève Alloing; Karine Mandon; Daniel Le Rudulier

In Sinorhizobium meliloti, choline is the direct precursor of phosphatidylcholine, a major lipid membrane component in the Rhizobiaceae family, and glycine betaine, an important osmoprotectant. Moreover, choline is an efficient energy source which supports growth. Using a PCR strategy, we identified three chromosomal genes (choXWV) which encode components of an ABC transporter: ChoX (binding protein), ChoW (permease), and ChoV (ATPase). Whereas the best homology scores were obtained with components of betaine ProU-like systems, Cho is not involved in betaine transport. Site-directed mutagenesis of choX strongly reduced (60 to 75%) the choline uptake activity, and purification of ChoX, together with analysis of the ligand-binding specificity, showed that ChoX binds choline with a high affinity (KD, 2.7 microM) and acetylcholine with a low affinity (KD, 145 microM) but binds none of the betaines. Uptake competition experiments also revealed that ectoine, various betaines, and choline derivatives were not effective competitors for Cho-mediated choline transport. Thus, Cho is a highly specific high-affinity choline transporter. Choline transport activity and ChoX expression were induced by choline but not by salt stress. Western blotting experiments with antibodies raised against ChoX demonstrated the presence of ChoX in bacteroids isolated from nitrogen-fixing nodules obtained from Medicago sativa roots. The choX mutation did not have an effect on growth under standard conditions, and neither Nod nor Fix phenotypes were impaired in the mutant, suggesting that the remaining choline uptake system(s) still present in the mutant strain can compensate for the lack of Cho transporter.


Journal of Bacteriology | 2000

Characterization of a Sinorhizobium meliloti ATP-binding cassette histidine transporter also involved in betaine and proline uptake.

Eric Boncompagni; Laurence Dupont; Tam Mignot; Magne Østerås; Annie Lambert; Marie-Christine Poggi; Daniel Le Rudulier

The symbiotic soil bacterium Sinorhizobium meliloti uses the compatible solutes glycine betaine and proline betaine for both protection against osmotic stress and, at low osmolarities, as an energy source. A PCR strategy based on conserved domains in components of the glycine betaine uptake systems from Escherichia coli (ProU) and Bacillus subtilis (OpuA and OpuC) allowed us to identify a highly homologous ATP-binding cassette (ABC) binding protein-dependent transporter in S. meliloti. This system was encoded by three genes (hutXWV) of an operon which also contained a fourth gene (hutH2) encoding a putative histidase, which is an enzyme involved in the first step of histidine catabolism. Site-directed mutagenesis of the gene encoding the periplasmic binding protein (hutX) and of the gene encoding the cytoplasmic ATPase (hutV) was done to study the substrate specificity of this transporter and its contribution in betaine uptake. These mutants showed a 50% reduction in high-affinity uptake of histidine, proline, and proline betaine and about a 30% reduction in low-affinity glycine betaine transport. When histidine was used as a nitrogen source, a 30% inhibition of growth was observed in hut mutants (hutX and hutH2). Expression analysis of the hut operon determined using a hutX-lacZ fusion revealed induction by histidine, but not by salt stress, suggesting this uptake system has a catabolic role rather than being involved in osmoprotection. To our knowledge, Hut is the first characterized histidine ABC transporter also involved in proline and betaine uptake.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Osmotically induced synthesis of the dipeptide N-acetylglutaminylglutamine amide is mediated by a new pathway conserved among bacteria

Brice Sagot; Marc Gaysinski; Mohamed Mehiri; Jean-Marie Guigonis; Daniel Le Rudulier; Geneviève Alloing

The dipeptide N-acetylglutaminylglutamine amide (NAGGN) was discovered in the bacterium Sinorhizobium meliloti grown at high osmolarity, and subsequently shown to be synthesized and accumulated by a few osmotically challenged bacteria. However, its biosynthetic pathway remained unknown. Recently, two genes, which putatively encode a glutamine amidotransferase and an acetyltransferase and are up-regulated by osmotic stress, were identified in Pseudomonas aeruginosa. In this work, a locus carrying the orthologous genes in S. meliloti, asnO and ngg, was identified, and the genetic and molecular characterization of the NAGGN biosynthetic pathway is reported. By using NMR experiments, it was found that strains inactivated in asnO and ngg were unable to produce the dipeptide. Such inability has a deleterious effect on S. meliloti growth at high osmolarity, demonstrating the key role of NAGGN biosynthesis in cell osmoprotection. β-Glucuronidase activity from transcriptional fusion revealed strong induction of asnO expression in cells grown in increased NaCl concentration, in good agreement with the NAGGN accumulation. The asnO–ngg cluster encodes a unique enzymatic machinery mediating nonribosomal peptide synthesis. This pathway first involves Ngg, a bifunctional enzyme that catalyzes the formation of the intermediate N-acetylglutaminylglutamine, and second AsnO, required for subsequent addition of an amide group and the conversion of N-acetylglutaminylglutamine into NAGGN. Interestingly, a strong conservation of the asnO–ngg cluster is observed in a large number of bacteria with different lifestyles, such as marine, symbiotic, and pathogenic bacteria, highlighting the ecological importance of NAGGN synthesis capability in osmoprotection and also potentially in bacteria host–cell interactions.


Molecular Plant-microbe Interactions | 2003

The Sinorhizobium meliloti glycine betaine biosynthetic genes (betICBA) are induced by choline and highly expressed in bacteroids

Karine Mandon; Magne Østerås; Eric Boncompagni; Jean Charles Trinchant; Guillaume Spennato; Marie Christine Poggi; Daniel Le Rudulier

The symbiotic soil bacterium Sinorhizobium meliloti has the capacity to synthesize the osmoprotectant glycine betaine from choline-O-sulfate and choline. This pathway is encoded by the betICBA locus, which comprises a regulatory gene, betI, and three structural genes, betC (choline sulfatase), betB (betaine aldehyde dehydrogenase), and betA (choline dehydrogenase). Here, we report that betICBA genes constitute a single operon, despite the existence of intergenic regions containing mosaic elements between betI and betC, and betB and betA. The regulation of the bet operon was investigated by using transcriptional lacZ (beta-galactosidase) fusions and has revealed a strong induction by choline at concentrations as low as 25 microM and to a lesser extent by choline-O-sulfate and acetylcholine but not by osmotic stress or oxygen. BetI is a repressor of the bet transcription in the absence of choline, and a nucleotide sequence of dyad symmetry upstream of betI was identified as a putative betI box. Measurements of intracellular pools of choline, well correlated with beta-galactosidase activities, strongly suggested that BetI senses the endogenous choline pool that modulates the intensity of BetI repression. In contrast to Escherichia coli, BetI did not repress choline transport. During symbiosis with Medicago sativa, S. meliloti bet gene expression was observed within the infection threads, in young and in mature nodules. The existence of free choline in nodule cytosol, peribacteroid space, and bacteroids was demonstrated, and the data suggest that bet regulation in planta is mediated by BetI repression, as in free-living cells. Neither Nod nor Fix phenotypes were significantly impaired in a betI::omega mutant, indicating that glycine betaine biosynthesis from choline is not crucial for nodulation and nitrogen fixation.

Collaboration


Dive into the Daniel Le Rudulier's collaboration.

Top Co-Authors

Avatar

Marie-Christine Poggi

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Karine Mandon

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Laurence Dupont

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Alexandre Boscari

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Geneviève Alloing

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

John G. Streeter

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Charles Trinchant

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge