Daniel Lingwood
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Lingwood.
Science | 2010
Daniel Lingwood; Kai Simons
Lipid Rafts Come of Age Living cells are surrounded by cellular membranes composed of lipids and proteins. Much attention has been paid to the biogenesis and sorting of membrane proteins. The dynamics and sorting of lipids have been much more difficult to study. Lingwood and Simons (p. 46) review the evidence for, and the role played by, so-called lipid rafts—laterally segregated regions within membranes enriched for particular lipids and proteins. Cell membranes display a tremendous complexity of lipids and proteins designed to perform the functions cells require. To coordinate these functions, the membrane is able to laterally segregate its constituents. This capability is based on dynamic liquid-liquid immiscibility and underlies the raft concept of membrane subcompartmentalization. Lipid rafts are fluctuating nanoscale assemblies of sphingolipid, cholesterol, and proteins that can be stabilized to coalesce, forming platforms that function in membrane signaling and trafficking. Here we review the evidence for how this principle combines the potential for sphingolipid-cholesterol self-assembly with protein specificity to selectively focus membrane bioactivity.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Daniel Lingwood; Jonas Ries; Petra Schwille; Kai Simons
Cell membranes are not randomly organized, but rather are populated by fluctuating nanoassemblies of increased translational order termed lipid rafts. This lateral heterogeneity can be biophysically extended because cooling formaldehyde-isolated plasma membrane preparations results in separation into phases similar to the liquid-ordered (Lo) and liquid-disordered (Ld) states seen in model membrane systems [Baumgart T, et al. (2007) Proc Natl Acad Sci USA 104:3165–3170]. In this work we demonstrate that raft clustering, i.e., amplifying underlying raft-based connectivity to a larger scale, makes an analogous capacity accessible at 37°C. In plasma membranes at this temperature, cholera toxin-mediated cross-linking of the raft ganglioside GM1 induced the sterol-dependent emergence of a slower diffusing micrometer-scale phase that was enriched in cholesterol and selectively reorganized the lateral distribution of membrane proteins. Although parallels can be drawn, we argue that this raft coalescence in a complex biological matrix cannot be explained by only those interactions that define Lo formation in model membranes. Under this light, our induction of raft-phase separation suggests that plasma membrane composition is poised for selective and functional raft clustering at physiologically relevant temperature.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Ilya Levental; Daniel Lingwood; Michal Grzybek; Uenal Coskun; Kai Simons
The physical basis for protein partitioning into lipid rafts remains an outstanding question in membrane biology that has previously been addressed only through indirect techniques involving differential solubilization by nonionic detergents. We have used giant plasma membrane vesicles, a plasma membrane model system that phase separates to include an ordered phase enriching for raft constituents, to measure the partitioning of the transmembrane linker for activation of T cells (LAT). LAT enrichment in the raft phase was dependent on palmitoylation at two juxtamembrane cysteines and could be enhanced by oligomerization. This palmitoylation requirement was also shown to regulate raft phase association for the majority of integral raft proteins. Because cysteine palmitoylation is the only lipid modification that has been shown to be reversibly regulated, our data suggest a role for palmitoylation as a dynamic raft targeting mechanism for transmembrane proteins.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Hermann Josef Kaiser; Daniel Lingwood; Ilya Levental; Julio L. Sampaio; Lucie Kalvodova; Lawrence Rajendran; Kai Simons
Lipid rafts are nanoscopic assemblies of sphingolipids, cholesterol, and specific membrane proteins that contribute to lateral heterogeneity in eukaryotic membranes. Separation of artificial membranes into liquid-ordered (Lo) and liquid-disordered phases is regarded as a common model for this compartmentalization. However, tight lipid packing in Lo phases seems to conflict with efficient partitioning of raft-associated transmembrane (TM) proteins. To assess membrane order as a component of raft organization, we performed fluorescence spectroscopy and microscopy with the membrane probes Laurdan and C-laurdan. First, we assessed lipid packing in model membranes of various compositions and found cholesterol and acyl chain dependence of membrane order. Then we probed cell membranes by using two novel systems that exhibit inducible phase separation: giant plasma membrane vesicles [Baumgart et al. (2007) Proc Natl Acad Sci USA 104:3165–3170] and plasma membrane spheres. Notably, only the latter support selective inclusion of raft TM proteins with the ganglioside GM1 into one phase. We measured comparable small differences in order between the separated phases of both biomembranes. Lateral packing in the ordered phase of giant plasma membrane vesicles resembled the Lo domain of model membranes, whereas the GM1 phase in plasma membrane spheres exhibited considerably lower order, consistent with different partitioning of lipid and TM protein markers. Thus, lipid-mediated coalescence of the GM1 raft domain seems to be distinct from the formation of a Lo phase, suggesting additional interactions between proteins and lipids to be effective.
Nature Protocols | 2007
Daniel Lingwood; Kai Simons
The biological membrane is a complicated matrix wherein different lipid environments are thought to exist. The more ordered or raft environment has been perceived biochemically accessible via its relative resistance to detergent. This paper outlines the protocols developed in our laboratory for the analysis of such detergent-resistant membranes (DRMs). We stress the fact that DRMs are artifactual in nature and should not be equivocated to lipid rafts, their usefulness being limited to assigning raft-association potential most convincingly when changes in DRM composition are induced by biochemically/physiologically relevant events. These protocols are completed in 1–2 d.
Nature Medicine | 2015
Hadi M. Yassine; Jeffrey C. Boyington; Patrick McTamney; Chih Jen Wei; Masaru Kanekiyo; Wing Pui Kong; John R. Gallagher; Lingshu Wang; Yi Zhang; M. Gordon Joyce; Daniel Lingwood; Syed M. Moin; Hanne Andersen; Yoshinobu Okuno; Srinivas S. Rao; Audray K. Harris; Peter D. Kwong; John R. Mascola; Gary J. Nabel; Barney S. Graham
The antibody response to influenza is primarily focused on the head region of the hemagglutinin (HA) glycoprotein, which in turn undergoes antigenic drift, thus necessitating annual updates of influenza vaccines. In contrast, the immunogenically subdominant stem region of HA is highly conserved and recognized by antibodies capable of binding multiple HA subtypes. Here we report the structure-based development of an H1 HA stem–only immunogen that confers heterosubtypic protection in mice and ferrets. Six iterative cycles of structure-based design (Gen1–Gen6) yielded successive H1 HA stabilized-stem (HA–SS) immunogens that lack the immunodominant head domain. Antigenic characterization, determination of two HA–SS crystal structures in complex with stem-specific monoclonal antibodies and cryo-electron microscopy analysis of HA–SS on ferritin nanoparticles (H1–SS–np) confirmed the preservation of key structural elements. Vaccination of mice and ferrets with H1–SS–np elicited broadly cross-reactive antibodies that completely protected mice and partially protected ferrets against lethal heterosubtypic H5N1 influenza virus challenge despite the absence of detectable H5N1 neutralizing activity in vitro. Passive transfer of immunoglobulin from H1–SS–np–immunized mice to naive mice conferred protection against H5N1 challenge, indicating that vaccine-elicited HA stem–specific antibodies can protect against diverse group 1 influenza strains.
Biochemical Society Transactions | 2009
Daniel Lingwood; Hermann Josef Kaiser; Ilya Levental; Kai Simons
Biological membranes are not structurally passive solvents of amphipathic proteins and lipids. Rather, it appears their constituents have evolved intrinsic characteristics that make homogeneous distribution of components unlikely. As a case in point, the concept of lipid rafts has received considerable attention from biologists and biophysicists since the formalization of the hypothesis more than 10 years ago. Today, it is clear that sphingolipid and cholesterol can self-associate into micron-scaled phases in model membranes and that these lipids are involved in the formation of highly dynamic nanoscale heterogeneity in the plasma membrane of living cells. However, it remains unclear whether these entities are manifestations of the same principle. A powerful means by which the molecular organization of rafts can be assessed is through analysis of their functionalized condition. Raft heterogeneity can be activated to coalesce and laterally reorganize/stabilize bioactivity in cell membranes. Evaluation of this property suggests that functional raft heterogeneity arises through principles of lipid-driven phase segregation coupled to additional chemical specificities, probably involving proteins.
Nature | 2012
Daniel Lingwood; Patrick McTamney; Hadi M. Yassine; James R. R. Whittle; Xiaoti Guo; Jeffrey C. Boyington; Chih-Jen Wei; Gary J. Nabel
Influenza viruses take a yearly toll on human life despite efforts to contain them with seasonal vaccines. These viruses evade human immunity through the evolution of variants that resist neutralization. The identification of antibodies that recognize invariant structures on the influenza haemagglutinin (HA) protein have invigorated efforts to develop universal influenza vaccines. Specifically, antibodies to the highly conserved stem region of HA neutralize diverse viral subtypes. These antibodies largely derive from a specific antibody gene, heavy-chain variable region IGHV1-69, after limited affinity maturation from their germline ancestors, but how HA stimulates naive B cells to mature and induce protective immunity is unknown. To address this question, we analysed the structural and genetic basis for their engagement and maturation into broadly neutralizing antibodies. Here we show that the germline-encoded precursors of these antibodies act as functional B-cell antigen receptors (BCRs) that initiate subsequent affinity maturation. Neither the germline precursor of a prototypic antibody, CR6261 (ref. 3), nor those of two other natural human IGHV1-69 antibodies, bound HA as soluble immunoglobulin-G (IgG). However, all three IGHV1-69 precursors engaged HA when the antibody was expressed as cell surface IgM. HA triggered BCR-associated tyrosine kinase signalling by germline transmembrane IgM. Recognition and virus neutralization was dependent solely on the heavy chain, and affinity maturation of CR6261 required only seven amino acids in the complementarity-determining region (CDR) H1 and framework region 3 (FR3) to restore full activity. These findings provide insight into the initial events that lead to the generation of broadly neutralizing antibodies to influenza, informing the rational design of vaccines to elicit such antibodies and providing a model relevant to other infectious diseases, including human immunodeficiency virus/AIDS. The data further suggest that selected immunoglobulin genes recognize specific protein structural ‘patterns’ that provide a substrate for further affinity maturation.
Cell | 2015
Tongqing Zhou; Rebecca M. Lynch; Lei Chen; Priyamvada Acharya; Xueling Wu; Nicole A. Doria-Rose; M. Gordon Joyce; Daniel Lingwood; Cinque Soto; Robert T. Bailer; Michael J. Ernandes; Rui Kong; Nancy S. Longo; Mark K. Louder; Krisha McKee; Sijy O’Dell; Stephen D. Schmidt; Lillian Tran; Zhongjia Yang; Aliaksandr Druz; Timothy S. Luongo; Stephanie Moquin; Sanjay Srivatsan; Yongping Yang; Baoshan Zhang; Anqi Zheng; Marie Pancera; Tatsiana Kirys; Ivelin S. Georgiev; Tatyana Gindin
The site on the HIV-1 gp120 glycoprotein that binds the CD4 receptor is recognized by broadly reactive antibodies, several of which neutralize over 90% of HIV-1 strains. To understand how antibodies achieve such neutralization, we isolated CD4-binding-site (CD4bs) antibodies and analyzed 16 co-crystal structures -8 determined here- of CD4bs antibodies from 14 donors. The 16 antibodies segregated by recognition mode and developmental ontogeny into two types: CDR H3-dominated and VH-gene-restricted. Both could achieve greater than 80% neutralization breadth, and both could develop in the same donor. Although paratope chemistries differed, all 16 gp120-CD4bs antibody complexes showed geometric similarity, with antibody-neutralization breadth correlating with antibody-angle of approach relative to the most effective antibody of each type. The repertoire for effective recognition of the CD4 supersite thus comprises antibodies with distinct paratopes arrayed about two optimal geometric orientations, one achieved by CDR H3 ontogenies and the other achieved by VH-gene-restricted ontogenies.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Hermann-Josef Kaiser; Adam Orłowski; Tomasz Róg; Thomas K.M. Nyholm; Wengang Chai; Ten Feizi; Daniel Lingwood; Ilpo Vattulainen; Kai Simons
Theoretical studies predict hydrophobic matching between transmembrane domains of proteins and bilayer lipids to be a physical mechanism by which membranes laterally self-organize. We now experimentally study the direct consequences of mismatching of transmembrane peptides of different length with bilayers of different thicknesses at the molecular level. In both model membranes and simulations we show that cholesterol critically constrains structural adaptations at the peptide-lipid interface under mismatch. These constraints translate into a sorting potential and lead to selective lateral segregation of peptides and lipids according to their hydrophobic length.