Daniel Loan Stroe
Aalborg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Loan Stroe.
IEEE Transactions on Power Systems | 2016
Vaclav Knap; Sanjay K. Chaudhary; Daniel Loan Stroe; Maciej Jozef Swierczynski; Bogdan-Ionut Craciun; Remus Teodorescu
Large-scale integration of renewable energy sources in power system leads to the replacement of conventional power plants (CPPs) and consequently challenges in power system reliability and security are introduced. This study is focused on improving the grid frequency response after a contingency event in the power system with a high penetration of wind power. An energy storage system (ESS) might be a viable solution for providing inertial response and primary frequency regulation. A methodology has been presented here for the sizing of the ESS in terms of required power and energy. It describes the contribution of the ESS to the grid, in terms of inertial constant and droop. The methodology is applied to a 12-bus grid model with high wind power penetration. The estimated ESS size for inertial response and primary frequency regulation services are validated through real-time simulations. Moreover, it is demonstrated that the ESS can provide the response similar to that provided by the CPPs.
IEEE Transactions on Industry Applications | 2017
Daniel Loan Stroe; Vaclav Knap; Maciej Jozef Swierczynski; Ana-Irina Stroe; Remus Teodorescu
Because of their characteristics, which have been continuously improved during the last years, Lithium-ion batteries have been proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though there are worldwide demonstration projects, where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present, there are no very clear requirements on how the Lithium-ion battery energy storage systems should be operated, while providing frequency regulation service and how the system has to reestablish its state of charge (SOC) once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for reestablishing the batteries’ SOC after the primary frequency regulation is successfully delivered.
international conference on industrial technology | 2015
Andoni Saez-de-Ibarra; Egoitz Martinez-Laserna; Cosmin Koch-Ciobotaru; Pedro Rodriguez; Daniel Loan Stroe; Maciej Jozef Swierczynski
The integration of renewable energies and the usage of battery energy storage systems (BESS) into the residential buildings opens the possibility for minimizing the electricity bill for the end-user. This paper proposes the use of batteries that have already been aged while powering electric vehicles, during their main first life application, for providing residential demand response service. The paper considers the decayed characteristics of these batteries and optimizes the rating of such a second life battery energy storage system (SLBESS) for maximizing the economic benefits of the users energy consumption during a period of one year. Furthermore, simulations were performed considering real data of PV generation, consumption, prices taken from the Spanish market and costs of battery and photovoltaic systems.
IEEE Transactions on Industry Applications | 2016
Andoni Saez-de-Ibarra; Egoitz Martinez-Laserna; Daniel Loan Stroe; Maciej Jozef Swierczynski; Pedro Rodriguez
Renewable power plants must comply with certain codes and requirements to be connected to the grid, being the ramp-rate compliance one of the most challenging requirements, especially for photovoltaic or wind energy generation plants. Battery-based energy storage systems represent a promising solution due to the fast dynamics of electrochemical storage systems, besides their scalability and flexibility. However, large-scale battery energy storage systems are still too expensive to be a mass market solution for the renewable energy resources integration. Thus, in order to make battery investment economically viable, the use of second life batteries is investigated in the paper. This paper proposes a method to determine the optimal sizing of a second life battery energy storage system (SLBESS). SLBESS performance is also validated and, as an ultimate step, the power exchanged with the batteries is calculated during one-year operation. The power profile obtained is further used to define the cycling patterns for laboratory testing of second life batteries and to study their ageing evolution when used for the power smoothing renewable integration application. Real photovoltaic energy generation data from a Spanish plant were used for the study.
european conference on cognitive ergonomics | 2015
Cosmin Koch-Ciobotaru; Andoni Saez-de-Ibarra; Egoitz Martinez-Laserna; Daniel Loan Stroe; Maciej Jozef Swierczynski; Pedro Rodriguez
Connecting renewable power plants to the grid must comply with certain codes and requirements. One requirement is the ramp rate constraint, which must be fulfilled in order to avoid penalties. As this service becomes compulsory with an increased grid penetration of renewable, all possible solutions must be explored especially that large battery energy storage systems are still expensive solutions. Thus, in order to make battery investment economic viable, the use of second life batteries is investigated in the present work. This paper proposes a method for determining firstly, the optimal rating of a second life battery energy storage system (SLBESS) and secondly, to obtain the power exchange and battery state of charge profiles during the operation. These will constitute the cycling patterns for testing batteries and studying the ageing effect of this specific application. Real data from the Spanish electricity market for a whole year are used for validating the results.
IEEE Transactions on Industry Applications | 2016
Daniel Loan Stroe; Maciej Jozef Swierczynski; Ana-Irina Stroe; Rasmus Lærke; Philip Carne Kjær; Remus Teodorescu
Energy storage systems based on Lithium-ion (Li-ion) batteries have been proposed as an environmentally friendly alternative to traditional conventional generating units for providing grid frequency regulation. One major challenge regarding the use of Lithium-ion batteries in such applications is their higher cost-in comparison with other storage technologies or with the traditional frequency regulation methods-combined with performance-degradation uncertainties. In order to surpass this challenge and to allow for optimal sizing and proper operation of the battery, accurate knowledge about the lifetime of the Li-ion battery and its degradation behavior is required. Thus, this paper aims to investigate, based on a laboratory developed lifetime model, the degradation behavior of the performance parameters (i.e., capacity and power capability) of a Li-ion battery cell when it is subjected to a field measured mission profile, which is characteristic for the primary frequency regulation service.
international conference on ecological vehicles and renewable energies | 2015
Daniel Loan Stroe; Maciej Jozef Swierczynski; Ana-Irina Stroe; Vaclav Knap; Remus Teodorescu; Søren Juhl Andreasen
The impedance represents one of the most important performance parameters of the Lithium-ion batteries since it used for power capability calculations, battery pack and system design, cooling system design and also for state-of-health estimation. In the literature, different approaches are presented for measuring the impedance of Lithium-ion batteries and electrochemical impedance spectroscopy and dc current pulses are the most used ones; each of these approaches has its own advantages and drawbacks. The goal of this paper is to investigate which of the most encountered impedance measurement approaches is the most suitable for measuring the impedance of Lithium-ion batteries during ageing.
european conference on power electronics and applications | 2016
Jean-Marc Timmermans; Alexandros Nikolian; Joris de Hoog; Rahul Gopalakrishnan; Shovon Goutam; Noshin Omar; Thierry Coosemans; Joeri Van Mierlo; Alexander Warnecke; Dirk Uwe Sauer; Maciej Jozef Swierczynski; Daniel Loan Stroe; Egoitz Martinez-Laserna; Elixabet Sarasketa-Zabala; Jon Gastelurrutia; Nerea Nieto
The European Project “Batteries 2020” unites nine partners jointly working on research and the development of competitive European automotive batteries. The project aims at increasing both the energy density and lifetime of large format pouch lithium-ion batteries towards the goals targeted for automotive batteries (250 Wh/kg at cell level, over 4000 cycles at 80% depth of discharge). Three parallel strategies are followed in order to achieve those targets: (i) Highly focused materials development; two improved generations of NMC cathode materials allows to improve the performance, stability and cyclability of state of the art battery cells. (ii) Better understanding of the ageing phenomena; a robust and realistic testing methodology has been developed and was carried out. Combined accelerated, real driving cycle tests, real field data, post-mortem analysis, modelling and validation with real driving profiles was used to obtain a thorough understanding of the degradation processes occurring in the battery cells. (iii) Reduction of battery cost; a way to reduce costs, increase battery residual value and improve sustainability is to consider second life uses of batteries used in electric vehicle application. These batteries are still operational and suitable to less restrictive conditions, such as those for stationary and renewable energy application. Therefore, possible second life opportunities have been identified and further assessed. In this paper, the main ageing effects of lithium ion batteries are explained. Next, an overview of different validated battery models will be discussed. Finally, a methodology for assessing the performance of the battery cells in a second life application is presented.
european conference on cognitive ergonomics | 2016
Egoitz Martinez-Laserna; Elixabet Sarasketa-Zabala; Daniel Loan Stroe; Maciej Jozef Swierczynski; Alexander Warnecke; Jean-Marc Timmermans; Shovon Goutam; Pedro Rodriguez
Reusing electric vehicle batteries once they have been retired from the automotive application is stated as one of the possible solutions to reduce electric vehicle costs. Many publications in the literature have analyzed the economic viability of such a solution, and some car manufacturers have recently started running several projects to demonstrate the technical viability of the so-called battery second life. Nevertheless, the performance and degradation of second life batteries remain an unknown topic and one of the biggest gaps in the literature. The present work aims at evaluating the effects of lithium-ion (Li-ion) battery State of Health (SOH) and ageing history over the second life performance on two different applications: a residential demand management application and a power smoothing renewable integration application. The performance and degradation of second life batteries are assessed both at the cell level and at stack level. Homogeneous and heterogeneous stacks are analyzed in order to evaluate the impact of cell-to-cell history and SOH differences over the stack level battery cell performance and degradation behaviour.
international conference on industrial informatics | 2015
Vaclav Knap; Daniel Loan Stroe; Remus Teodorescu; Maciej Jozef Swierczynski; Tiberiu Stanciu
Lithium-Sulfur (Li-S) batteries are an emerging energy storage technology, which draw interest due to its high theoretical specific capacity (approx. 1675 Ah/kg) and theoretical energy density of almost 2600 Wh/kg. In order to analyse their dynamic behaviour and to determine their suitability for various commercial applications, battery performance models are needed. The development of such models represents a challenging task especially for Li-S batteries because this technology during their operation undergo several different chemical reactions, known as polysulfide shuttle. This paper focuses on the comparison of different parametrization methods of electrical circuit models (ECMs) for Li-S batteries. These methods are used to parametrize an ECM based on laboratory measurements performed on a Li-S pouch cell. Simulation results of ECMs are presented and compared against measurement values and the accuracy of parametrization methods are evaluated and compared.